A303677 Number of nX2 0..1 arrays with every element unequal to 0, 1 or 3 king-move adjacent elements, with upper left element zero.
2, 5, 7, 17, 31, 49, 103, 193, 327, 641, 1207, 2129, 4039, 7585, 13687, 25585, 47847, 87425, 162391, 302609, 556615, 1031329, 1916983, 3538225, 6550311, 12155585, 22474519, 41599313, 77121031, 142707937, 264156151, 489441649, 906031335
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..1. .0..1. .0..0. .0..0. .0..1. .0..1. .0..0. .0..0. .0..0. .0..0 ..0..0. .0..0. .1..0. .0..1. .1..1. .0..0. .1..0. .0..0. .0..0. .0..0 ..0..0. .0..0. .1..1. .1..1. .1..1. .0..0. .1..1. .0..0. .0..0. .0..0 ..0..0. .0..0. .1..1. .1..1. .0..1. .0..1. .0..0. .0..0. .0..0. .1..0 ..0..1. .0..0. .1..0. .1..0. .0..0. .1..1. .1..0. .0..0. .0..1. .1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A303682.
Formula
Empirical: a(n) = a(n-1) +4*a(n-3) -2*a(n-4) for n>5
Comments