A303696 Number A(n,k) of binary words of length n with k times as many occurrences of subword 101 as occurrences of subword 010; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 2, 1, 2, 4, 1, 2, 4, 7, 1, 2, 4, 6, 12, 1, 2, 4, 6, 12, 21, 1, 2, 4, 6, 10, 20, 37, 1, 2, 4, 6, 10, 17, 38, 65, 1, 2, 4, 6, 10, 16, 28, 66, 114, 1, 2, 4, 6, 10, 16, 26, 49, 124, 200, 1, 2, 4, 6, 10, 16, 26, 42, 84, 224, 351, 1, 2, 4, 6, 10, 16, 26, 42, 70, 148, 424, 616
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, ... 2, 2, 2, 2, 2, 2, 2, ... 4, 4, 4, 4, 4, 4, 4, ... 7, 6, 6, 6, 6, 6, 6, ... 12, 12, 10, 10, 10, 10, 10, ... 21, 20, 17, 16, 16, 16, 16, ... 37, 38, 28, 26, 26, 26, 26, ... 65, 66, 49, 42, 42, 42, 42, ... 114, 124, 84, 70, 68, 68, 68, ... 200, 224, 148, 116, 110, 110, 110, ... 351, 424, 263, 196, 178, 178, 178, ...
Links
- Alois P. Heinz, Antidiagonals for n = 0..200, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, t, h, c, k) option remember; `if`(abs(c)>k*n, 0, `if`(n=0, 1, b(n-1, [1, 3, 1][t], 2, c-`if`(h=3, k, 0), k) + b(n-1, 2, [1, 3, 1][h], c+`if`(t=3, 1, 0), k))) end: A:= (n, k)-> b(n, 1$2, 0, min(k, n)): seq(seq(A(n, d-n), n=0..d), d=0..14);
-
Mathematica
b[n_, t_, h_, c_, k_] := b[n, t, h, c, k] = If[Abs[c] > k n, 0, If[n == 0, 1, b[n - 1, {1, 3, 1}[[t]], 2, c - If[h == 3, k, 0], k] + b[n - 1, 2, {1, 3, 1}[[h]], c + If[t == 3, 1, 0], k]]]; A[n_, k_] := b[n, 1, 1, 0, Min[k, n]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Mar 20 2020, from Maple *)
Formula
ceiling(A(n,n)/2) = A000045(n+1).
Comments