cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303696 Number A(n,k) of binary words of length n with k times as many occurrences of subword 101 as occurrences of subword 010; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 2, 4, 7, 1, 2, 4, 6, 12, 1, 2, 4, 6, 12, 21, 1, 2, 4, 6, 10, 20, 37, 1, 2, 4, 6, 10, 17, 38, 65, 1, 2, 4, 6, 10, 16, 28, 66, 114, 1, 2, 4, 6, 10, 16, 26, 49, 124, 200, 1, 2, 4, 6, 10, 16, 26, 42, 84, 224, 351, 1, 2, 4, 6, 10, 16, 26, 42, 70, 148, 424, 616
Offset: 0

Views

Author

Alois P. Heinz, Apr 28 2018

Keywords

Comments

A(n,n) is the number of binary words of length n avoiding both subwords 101 and 010. A(4,4) = 10: 0000, 0001, 0011, 0110, 0111, 1000, 1001, 1100, 1110, 1111.

Examples

			Square array A(n,k) begins:
    1,   1,   1,   1,   1,   1,   1, ...
    2,   2,   2,   2,   2,   2,   2, ...
    4,   4,   4,   4,   4,   4,   4, ...
    7,   6,   6,   6,   6,   6,   6, ...
   12,  12,  10,  10,  10,  10,  10, ...
   21,  20,  17,  16,  16,  16,  16, ...
   37,  38,  28,  26,  26,  26,  26, ...
   65,  66,  49,  42,  42,  42,  42, ...
  114, 124,  84,  70,  68,  68,  68, ...
  200, 224, 148, 116, 110, 110, 110, ...
  351, 424, 263, 196, 178, 178, 178, ...
		

Crossrefs

Columns k=0-3 give: A005251(n+3), A164146, A303430, A307795.
Main diagonal gives A128588(n+1).

Programs

  • Maple
    b:= proc(n, t, h, c, k) option remember; `if`(abs(c)>k*n, 0,
         `if`(n=0, 1, b(n-1, [1, 3, 1][t], 2, c-`if`(h=3, k, 0), k)
                    + b(n-1, 2, [1, 3, 1][h], c+`if`(t=3, 1, 0), k)))
        end:
    A:= (n, k)-> b(n, 1$2, 0, min(k, n)):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, t_, h_, c_, k_] := b[n, t, h, c, k] = If[Abs[c] > k n, 0, If[n == 0, 1, b[n - 1, {1, 3, 1}[[t]], 2, c - If[h == 3, k, 0], k] + b[n - 1, 2, {1, 3, 1}[[h]], c + If[t == 3, 1, 0], k]]];
    A[n_, k_] := b[n, 1, 1, 0, Min[k, n]];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Mar 20 2020, from Maple *)

Formula

ceiling(A(n,n)/2) = A000045(n+1).