cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303697 Number T(n,k) of permutations p of [n] whose difference between sum of up-jumps and sum of down-jumps equals k; triangle T(n,k), n>=0, min(0,1-n)<=k<=max(0,n-1), read by rows.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 4, 5, 4, 5, 4, 1, 1, 11, 19, 19, 20, 19, 19, 11, 1, 1, 26, 82, 100, 101, 100, 101, 100, 82, 26, 1, 1, 57, 334, 580, 619, 619, 620, 619, 619, 580, 334, 57, 1, 1, 120, 1255, 3394, 4339, 4420, 4421, 4420, 4421, 4420, 4339, 3394, 1255, 120, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 28 2018

Keywords

Comments

An up-jump j occurs at position i in p if p_{i} > p_{i-1} and j is the index of p_i in the increasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are larger than p_{i-1}. A down-jump j occurs at position i in p if p_{i} < p_{i-1} and j is the index of p_i in the decreasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are smaller than p_{i-1}. First index in the lists is 1 here.

Examples

			Triangle T(n,k) begins:
:                               1                             ;
:                               1                             ;
:                          1,   0,   1                        ;
:                     1,   1,   2,   1,   1                   ;
:                1,   4,   5,   4,   5,   4,   1              ;
:           1,  11,  19,  19,  20,  19,  19,  11,   1         ;
:      1,  26,  82, 100, 101, 100, 101, 100,  82,  26,  1     ;
:  1, 57, 334, 580, 619, 619, 620, 619, 619, 580, 334, 57, 1  ;
		

Crossrefs

Programs

  • Maple
    b:= proc(u, o) option remember; expand(`if`(u+o=0, 1,
          add(b(u-j, o+j-1)*x^(-j), j=1..u)+
          add(b(u+j-1, o-j)*x^( j), j=1..o)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=ldegree(p)..degree(p)))(
            `if`(n=0, 1, add(b(j-1, n-j), j=1..n))):
    seq(T(n), n=0..12);
  • Mathematica
    b[u_, o_] := b[u, o] = Expand[If[u+o == 0, 1,
         Sum[b[u-j, o+j-1] x^-j, {j, 1, u}] +
         Sum[b[u+j-1, o-j] x^j, {j, 1, o}]]];
    T[0] = {1};
    T[n_] := x^n Sum[b[j-1, n-j], {j, 1, n}] // CoefficientList[#, x]& // Rest;
    T /@ Range[0, 12] // Flatten (* Jean-François Alcover, Feb 20 2021, after Alois P. Heinz *)

Formula

T(n,0) = A153229(n) for n > 0.
T(n,1) = A005165(n-1) for n > 0.
T(n+1,n-1) = A000295(n).
T(n,k) = T(n,-k).
Sum_{k=0..n-1} k^2 * T(n,k) = A001720(n+2) for n>1.