A303702 Number of ways to write 2*n as p + 2^k + 3^m, where p is a prime, and k and m are nonnegative integers.
0, 1, 2, 3, 4, 5, 5, 7, 6, 6, 9, 9, 5, 8, 9, 6, 9, 11, 8, 10, 11, 7, 12, 15, 8, 10, 12, 7, 10, 9, 8, 12, 11, 5, 12, 16, 7, 13, 17, 8, 10, 15, 10, 13, 14, 10, 12, 17, 7, 12, 18, 11, 13, 17, 10, 13, 20, 11, 14, 17, 8, 10, 16, 7, 10
Offset: 1
Keywords
Examples
a(2) = 1 since 2*2 = 2 + 2^0 + 3^0 with 2 prime. a(3) = 2 since 2*3 = 2 + 2^0 + 3^1 = 3 + 2^1 + 3^0 with 2 and 3 prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Mixed sums of primes and other terms, in: Additive Number Theory (edited by D. Chudnovsky and G. Chudnovsky), pp. 341-353, Springer, New York, 2010.
- Zhi-Wei Sun, Conjectures on representations involving primes, in: M. Nathanson (ed.), Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, Springer, Cham, 2017, pp. 279-310. (See also arXiv:1211.1588 [math.NT], 2012-2017.)
Crossrefs
Programs
-
Mathematica
tab={};Do[r=0;Do[If[PrimeQ[2n-2^x-3^y],r=r+1],{x,0,Log[2,2n-1]},{y,0,Log[3,2n-2^x]}];tab=Append[tab,r],{n,1,65}];Print[tab]
Comments