cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303704 Numbers k such that all coprime quadratic residues modulo k are squares.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 21, 24, 28, 40, 48, 56, 60, 72, 88, 120, 168, 240, 840
Offset: 1

Views

Author

Jianing Song, Apr 29 2018

Keywords

Comments

Numbers k such that A046073(k) = A057828(k).
There are exactly 25 members in this sequence and this is the full list. Note that for other k, A046073(k) > A057828(k).
From Jianing Song, Feb 14 2019: (Start)
For the proof that this sequence is finite, we will show that there are no terms > 130729.
Let A(n) = A046073(n) be the number of coprime quadratic residues modulo n. By definition, if k is a term then A(k) <= sqrt(k), that is, A(k)/sqrt(k) <= 1. Let f(n) = A(n)/sqrt(n), then f(n) is multiplicative with f(2) = sqrt(2)/2, f(4) = 1/2, f(2^e) = 2^(e/2 - 3) for e >= 3, f(p^e) = ((p - 1)/2)*p^(e/2 - 1) when p > 2. Note that f(2^e) >= a(2^3), f(p^e) >= f(p), f(p) > 1 when p >= 7. For every number n, we have:
a) if n is divisible by a prime >= 127, then f(n) >= f(2^3)*f(3)*f(5)*f(127) = sqrt(1323/1270) > 1.
b) if n is divisible by two distinct primes >= 23, then f(n) >= f(2^3)*f(3)*f(5)*f(23)*f(29) = sqrt(11858/10005) > 1.
So if k > 130729 is a term, then all prime factors of k are no greater than 113, and k contains at most one prime factor >= 23. On the other hand, if all prime factors of k are no greater than 19, then 53881 is a coprime quadratic residue modulo k because 53881 is a coprime quadratic residue modulo 2^3, 3, 5, 7, 11, 13, 17 and 19, but 53881 is not a perfect square, a contradiction. As a result, k must contain exactly one prime factor p in [23, 113].
Now if a number m is a coprime quadratic residue modulo 2^3, 3, 5, 7, 11, 13, 17, 19 and p, then m is a coprime quadratic residue modulo k. Consider the numbers 53881, 86641, 87481, 102001, 117049 and 130729. At least one of them is a coprime quadratic residue modulo each prime p in [23, 113], so at least one of them is a coprime quadratic residue modulo k, but none of them is a square, a contradiction! (End)

Examples

			All coprime quadratic residues modulo 21 are 1, 4, 16 and they are all squares, so 21 is a term.
All coprime quadratic residues modulo 840 are 1, 121, 169, 289, 361, 529 and they are all squares, so 840 is a term.
249 == 23^2 is a coprime quadratic residue modulo 280 but 249 is not a square number, so 280 is not a term.
		

Crossrefs

A254328 is a subsequence.

Programs

  • PARI
    for(k=1, 130729, if(eulerphi(k)/2^#znstar(k)[2]<=sqrt(k), for(j=1, k, if(gcd(j,k)==1&&!issquare(j^2%k), break()); if(j==k, print1(k, ", "))))) \\ Jianing Song, Feb 15 2019