A303706 a(n) is the number of lattice points in a Cartesian grid between an equilateral triangle and an inscribed circle of radius n; one of the side of triangle is perpendicular to the X-axis; the circle's center is at the origin.
0, 5, 14, 29, 42, 65, 94, 123, 154, 187, 234, 289, 328, 383, 436, 507, 572, 645, 716, 789, 884, 961, 1058, 1159, 1244, 1347, 1454, 1573, 1692, 1805, 1940, 2057, 2194, 2325, 2454, 2621, 2758, 2927, 3060, 3221, 3404, 3571, 3746, 3909, 4086, 4293, 4478, 4677, 4868, 5061, 5256, 5465, 5698, 5915
Offset: 1
Keywords
Examples
For n = 2 we have 5 lattice points: (-1, 2); (-1, -2); (2, -1); (2, 1); (3, 0).
Links
- Kirill Ustyantsev, Geometric illustration
Programs
-
PARI
a(n) = sum(x=-n+1, 2*n, sum(y=-2*n, 2*n, ((x^2+y^2) > n^2) && (3*y^2 < (x-2*n)^2))); \\ Michel Marcus, May 22 2018
-
Python
import math tan=math.sqrt(3)/3 for n in range (1,71): count=0 for x in range (-n, 2*n): for y in range (-2*n, 2*n): if (x*x+y*y>n*n and y<-tan*x+2*tan*n and y>tan*x-2*tan*n and x>-n): count=count+1 print(count)