A303719 T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 1 or 5 king-move adjacent elements, with upper left element zero.
1, 2, 2, 3, 1, 3, 5, 3, 3, 5, 8, 5, 5, 5, 8, 13, 7, 8, 8, 7, 13, 21, 13, 14, 17, 14, 13, 21, 34, 23, 24, 36, 36, 24, 23, 34, 55, 37, 40, 76, 81, 76, 40, 37, 55, 89, 63, 68, 161, 169, 169, 161, 68, 63, 89, 144, 109, 116, 349, 361, 343, 361, 349, 116, 109, 144, 233, 183, 196, 749
Offset: 1
Examples
Some solutions for n=5 k=4 ..0..0..1..0. .0..0..1..0. .0..0..0..0. .0..0..0..0. .0..0..0..0 ..0..0..0..0. .0..0..0..0. .1..0..0..0. .1..0..0..0. .0..0..0..0 ..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0 ..1..0..0..1. .0..0..0..0. .0..0..0..1. .0..0..0..0. .0..0..0..0 ..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..6123
Formula
Empirical for diagonal:
Diagonal: [linear recurrence of order 15] for n>18
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = a(n-1) +2*a(n-3) for n>4
k=3: a(n) = a(n-1) +2*a(n-3) for n>4
k=4: a(n) = a(n-1) +a(n-2) +3*a(n-3) +a(n-4) -a(n-5) -a(n-6)
k=5: a(n) = a(n-1) +a(n-2) +3*a(n-3) +a(n-4) -a(n-5) -a(n-6) for n>9
k=6: a(n) = a(n-1) +a(n-2) +3*a(n-3) +a(n-4) -a(n-5) -a(n-6) for n>9
k=7: a(n) = a(n-1) +a(n-2) +3*a(n-3) +a(n-4) -a(n-5) -a(n-6) for n>9
Comments