A303730 Number of noncrossing path sets on n nodes with each path having at least two nodes.
1, 0, 1, 3, 10, 35, 128, 483, 1866, 7344, 29342, 118701, 485249, 2001467, 8319019, 34810084, 146519286, 619939204, 2635257950, 11248889770, 48198305528, 207222648334, 893704746508, 3865335575201, 16761606193951, 72860178774410, 317418310631983, 1385703968792040
Offset: 0
Keywords
Examples
Case n=3: There are 3 possibilities: . o o o / \ / \ o---o o---o o o . Case n=4: There are 10 possibilities: . o o o o o---o o---o o---o | | | | | | | | o o o---o o---o o o o---o . o---o o---o o---o o o o o / \ | / | | \ | o---o o---o o---o o o o o .
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- Isaac DeJager, Madeleine Naquin, Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
Programs
-
Mathematica
InverseSeries[x*(1 - 2*x)^2/(1 - 4*x + 5*x^2 - x^3) + O[x]^30, x] // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Jul 03 2018, from PARI *)
-
PARI
Vec(serreverse(x*(1 - 2*x)^2/(1 - 4*x + 5*x^2 - x^3) + O(x^30)))
Formula
G.f.: G(x)/x where G(x) is the reversion of x*(1 - 2*x)^2/(1 - 4*x + 5*x^2 - x^3).
Comments