A303745 Totients t where gcd({x: phi(x)=t}) > 1.
10, 22, 28, 30, 44, 46, 52, 54, 56, 58, 66, 70, 78, 82, 92, 102, 104, 106, 110, 116, 126, 130, 136, 138, 140, 148, 150, 164, 166, 172, 178, 184, 190, 196, 198, 204, 208, 210, 212, 220, 222, 226, 228, 238, 250, 260, 262, 268, 270, 282, 292, 294, 296, 306
Offset: 1
Keywords
Examples
10 is a term because the greatest common divisor of 11 and 22, the solutions of phi(10) is 11. 2 is not a term because the greatest common divisor of 3, 4 and 6, the solutions of phi(2) is 1.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Max Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems (invphi.gp).
- Maxim Rytin, Finding the Inverse of Euler Totient Function, Wolfram Library Archive, 1999.
Programs
-
Maple
filter:= proc(n) local L; L:= numtheory:-invphi(n); L <> [] and igcd(op(L)) > 1 end proc: select(filter, [seq(i,i=2..1000, 2)]); # Robert Israel, Jun 26 2018
-
Mathematica
Select[Range[2, 1000, 2], GCD@@invphi[#] > 1&] (* Jean-François Alcover, Jan 31 2023, using Maxim Rytin's invphi program *)
-
PARI
isok(n) = gcd(invphi(n)) > 1; \\ Michel Marcus, May 13 2018
Formula
gcd({x: phi(x)=t}) > 1.
Comments