A303754 a(1) = 1 and for n > 1, a(n) = number of values of k, 2 <= k <= n, with A303753(k) = A303753(n), where A303753 is ordinal transform of cototient, A051953.
1, 1, 1, 2, 1, 3, 1, 2, 4, 5, 1, 6, 1, 3, 7, 2, 1, 8, 1, 4, 9, 3, 1, 10, 11, 12, 5, 6, 1, 13, 1, 4, 14, 15, 16, 17, 1, 18, 19, 7, 1, 20, 1, 5, 21, 2, 1, 22, 8, 9, 23, 24, 1, 25, 10, 11, 12, 6, 1, 26, 1, 7, 27, 3, 28, 29, 1, 13, 30, 14, 1, 31, 1, 32, 33, 34, 15, 35, 1, 16, 17, 36, 1, 37, 8, 18, 38, 9, 1, 39, 19, 4, 40, 2, 41, 42, 1, 43, 44, 20, 1, 45, 1, 21
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
b[_] = 0; A303753[n_] := A303753[n] = With[{t = EulerPhi[n] - n}, b[t] = b[t]+1]; f[n_] := If[n == 1, 0, A303753[n]]; Clear[b]; b[_] = 0; a[n_] := a[n] = With[{t = f[n]}, b[t] = b[t]+1]; Array[a, 105] (* Jean-François Alcover, Dec 19 2021 *)
-
PARI
up_to = 65537; ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; }; A051953(n) = (n - eulerphi(n)); v303753 = ordinal_transform(vector(up_to,n,A051953(n))); Aux303754(n) = if(1==n,0,v303753[n]); v303754 = ordinal_transform(vector(up_to,n,Aux303754(n))); A303754(n) = v303754[n];
Comments