cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303754 a(1) = 1 and for n > 1, a(n) = number of values of k, 2 <= k <= n, with A303753(k) = A303753(n), where A303753 is ordinal transform of cototient, A051953.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 2, 4, 5, 1, 6, 1, 3, 7, 2, 1, 8, 1, 4, 9, 3, 1, 10, 11, 12, 5, 6, 1, 13, 1, 4, 14, 15, 16, 17, 1, 18, 19, 7, 1, 20, 1, 5, 21, 2, 1, 22, 8, 9, 23, 24, 1, 25, 10, 11, 12, 6, 1, 26, 1, 7, 27, 3, 28, 29, 1, 13, 30, 14, 1, 31, 1, 32, 33, 34, 15, 35, 1, 16, 17, 36, 1, 37, 8, 18, 38, 9, 1, 39, 19, 4, 40, 2, 41, 42, 1, 43, 44, 20, 1, 45, 1, 21
Offset: 1

Views

Author

Antti Karttunen, Apr 30 2018

Keywords

Comments

Ordinal transform of f, where f(1) = 0 and f(n) = A303753(n) for n > 1.

Crossrefs

Cf. also A081373, A303757.

Programs

  • Mathematica
    b[_] = 0;
    A303753[n_] := A303753[n] = With[{t = EulerPhi[n] - n}, b[t] = b[t]+1];
    f[n_] := If[n == 1, 0, A303753[n]];
    Clear[b]; b[_] = 0;
    a[n_] := a[n] = With[{t = f[n]}, b[t] = b[t]+1];
    Array[a, 105] (* Jean-François Alcover, Dec 19 2021 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A051953(n) = (n - eulerphi(n));
    v303753 = ordinal_transform(vector(up_to,n,A051953(n)));
    Aux303754(n) = if(1==n,0,v303753[n]);
    v303754 = ordinal_transform(vector(up_to,n,Aux303754(n)));
    A303754(n) = v303754[n];