A303757 a(1) = 1 and for n > 1, a(n) = number of values of k, 2 <= k <= n, with A000010(k) = A000010(n), where A000010 is Euler totient function phi.
1, 1, 1, 2, 1, 3, 1, 2, 2, 3, 1, 4, 1, 3, 1, 2, 1, 4, 1, 3, 2, 2, 1, 4, 1, 3, 2, 4, 1, 5, 1, 2, 2, 3, 1, 5, 1, 3, 2, 4, 1, 6, 1, 3, 3, 2, 1, 5, 2, 4, 1, 4, 1, 4, 2, 5, 2, 2, 1, 6, 1, 2, 3, 2, 1, 5, 1, 3, 1, 6, 1, 7, 1, 4, 3, 5, 2, 8, 1, 4, 1, 4, 1, 9, 1, 3, 1, 5, 1, 10, 2, 2, 3, 2, 3, 5, 1, 4, 4, 6, 1, 6, 1, 2, 3
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
With[{s = EulerPhi@ Range@ 105}, MapAt[# + 1 &, Table[Count[s[[2 ;; n]], ?(# == s[[n]] &)], {n, Length@ s}], 1]] (* _Michael De Vlieger, Nov 23 2018 *)
-
PARI
up_to = 65537; ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; }; Aux303757(n) = if(1==n,0,eulerphi(n)); v303757 = ordinal_transform(vector(up_to,n,Aux303757(n))); A303757(n) = v303757[n];
Formula
Except for a(2) = 1, a(n) = A081373(n).
Comments