cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A330753 Number of values of k, 1 <= k <= n, with A309639(k) = A309639(n), where A309639 gives the index of the least harmonic number whose denominator is divisible by n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 1, 3, 1, 5, 1, 1, 3, 2, 4, 5, 1, 2, 3, 2, 1, 6, 1, 4, 7, 2, 1, 2, 1, 2, 3, 4, 1, 2, 5, 3, 3, 2, 1, 6, 1, 2, 8, 1, 5, 6, 1, 4, 1, 5, 1, 9, 1, 2, 3, 4, 7, 6, 1, 3, 1, 2, 1, 10, 5, 2, 3, 8, 1, 11, 7, 3, 3, 2, 5, 2, 1, 2, 9, 4, 1, 6, 1, 8, 12
Offset: 1

Views

Author

Antti Karttunen, Dec 30 2019

Keywords

Comments

Ordinal transform of A309639.
For all n, a(A000961(n)) = 1, but the sequence obtains value 1 also on other n that are not prime powers. In range 1..65537 these extra 1's occur at n = 69, 201, 407, 505, 576, 869, 1791, 5157, 9383, 9691, 10219, 10571, 10991, 12575, 12731, 13343, 13739, 14179, 14483, 14693, 16173, 16723, 23347, 24209, 26233, 26377, 37393, 44407, 46089, 53707, 62063.

Crossrefs

Cf. also A303759, A330754.

Programs

  • PARI
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    v330753 = ordinal_transform(vector(up_to, n, A309639(n)));
    A330753(n) = v330753[n];

A330755 Number of values of k, 1 <= k <= n, with A034684(k) = A034684(n), where A034684 gives the smallest unitary divisor of n that is larger than 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 4, 3, 1, 1, 5, 1, 2, 4, 6, 1, 5, 1, 7, 1, 3, 1, 8, 1, 1, 6, 9, 2, 4, 1, 10, 7, 3, 1, 11, 1, 5, 4, 12, 1, 8, 1, 13, 9, 6, 1, 14, 5, 2, 10, 15, 1, 11, 1, 16, 3, 1, 6, 17, 1, 7, 12, 18, 1, 2, 1, 19, 13, 8, 4, 20, 1, 7, 1, 21, 1, 14, 8, 22, 15, 3, 1, 23, 5, 9, 16, 24, 9, 17, 1, 25, 2, 10, 1, 26, 1, 4, 18
Offset: 1

Views

Author

Antti Karttunen, Dec 30 2019

Keywords

Comments

Ordinal transform of A034684.

Crossrefs

Programs

  • Mathematica
    A034684[n_] := With[{f = FactorInteger[n]}, Min[f[[All, 1]]^f[[All, 2]]]];
    Module[{b}, b[_] = 0;
    a[n_] := With[{t = A034684[n]}, b[t] = b[t] + 1]];
    Array[a, 105] (* Jean-François Alcover, Jan 10 2022 *)
  • PARI
    up_to = 65537;
    A034684(n) = if(1==n,n,my(f=factor(n)); vecmin(vector(#f[, 1], i, f[i, 1]^f[i, 2]))); \\ After code in A034699
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    v330755 = ordinal_transform(vector(up_to, n, A034684(n)));
    A330755(n) = v330755[n];
Showing 1-2 of 2 results.