A303771 Divisor-or-multiple permutation of natural numbers, "Fermi-Dirac piano played with May code": a(n) = A052330(A303767(n)).
1, 2, 6, 3, 12, 4, 8, 24, 120, 5, 10, 30, 15, 60, 20, 40, 280, 7, 14, 42, 21, 84, 28, 56, 168, 840, 35, 70, 210, 105, 420, 140, 1260, 9, 18, 54, 27, 108, 36, 72, 216, 1080, 45, 90, 270, 135, 540, 180, 360, 2520, 63, 126, 378, 189, 756, 252, 504, 1512, 7560, 315, 630, 1890, 945, 3780, 41580, 11, 22, 66, 33, 132, 44, 88, 264, 1320, 55, 110, 330, 165, 660, 220
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..16383
- Michel Marcus, Peter Munn, et al., Discussion on SeqFan-list about similar permutations, April 2018
- Index entries for sequences that are permutations of the natural numbers
Crossrefs
Programs
-
PARI
default(parisizemax,2^31); up_to_e = 16; up_to = (1 + 2^up_to_e); v050376 = vector(2+up_to_e); A050376(n) = v050376[n]; ispow2(n) = (n && !bitand(n,n-1)); i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == 2+up_to_e,break)); A052330(n) = { my(p=1,i=1); while(n>0, if(n%2, p *= A050376(i)); i++; n >>= 1); (p); }; A053669(n) = forprime(p=2, , if (n % p, return(p))); \\ From A053669 v303760 = vector(up_to); m_inverses = Map(); prev=1; for(n=1,up_to,fordiv(prev,d,if(!mapisdefined(m_inverses,d),v303760[n] = d;mapput(m_inverses,d,n);break)); if(!v303760[n], apu = prev; while(mapisdefined(m_inverses,try = prev*A053669(apu)), apu *= A053669(apu)); v303760[n] = try; mapput(m_inverses,try,n)); prev = v303760[n]); A303760(n) = v303760[n+1]; A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; }; A303771(n) = A052330(A048675(A303760(n)));
Extensions
Name amended by Antti Karttunen, May 16 2018
Comments