cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303812 Generalized 28-gonal (or icosioctagonal) numbers: m*(13*m - 12) with m = 0, +1, -1, +2, -2, +3, -3, ...

Original entry on oeis.org

0, 1, 25, 28, 76, 81, 153, 160, 256, 265, 385, 396, 540, 553, 721, 736, 928, 945, 1161, 1180, 1420, 1441, 1705, 1728, 2016, 2041, 2353, 2380, 2716, 2745, 3105, 3136, 3520, 3553, 3961, 3996, 4428, 4465, 4921, 4960, 5440, 5481, 5985, 6028, 6556, 6601, 7153, 7200, 7776, 7825, 8425, 8476, 9100, 9153
Offset: 0

Views

Author

Omar E. Pol, Jun 12 2018

Keywords

Comments

Partial sums of A317324. - Omar E. Pol, Jul 28 2018

Crossrefs

Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), this sequence (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Magma
    I:=[0,1,25,28,76]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..60]]; // Vincenzo Librandi, Jun 23 2018
  • Mathematica
    With[{nn = 54, s = 28}, {0}~Join~Riffle[Array[PolygonalNumber[s, #] &, Ceiling[nn/2]], Array[PolygonalNumber[s, -#] &, Ceiling[nn/2]]]] (* Michael De Vlieger, Jun 14 2018 *)
    CoefficientList[Series[x (1 + 24 x + x^2) / ((1 + x)^2 (1 - x)^3), {x, 0, 60}], x] (* Vincenzo Librandi, Jun 23 2018 *)

Formula

G.f.: x*(1 + 24*x + x^2) / ((1 + x)^2*(1 - x)^3). - Vincenzo Librandi, Jun 23 2018
From Amiram Eldar, Mar 01 2022: (Start)
a(n) = (26*n*(n + 1) + 11*(2*n + 1)*(-1)^n - 11)/8.
a(n) = n*(13*n + 24)/4, if n is even, or (n + 1)*(13*n - 11)/4 otherwise.
Sum_{n>=1} 1/a(n) = 13/144 + Pi*cot(Pi/13)/12. (End)