cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303814 Generalized 24-gonal (or icositetragonal) numbers: m*(11*m - 10) with m = 0, +1, -1, +2, -2, +3, -3, ...

Original entry on oeis.org

0, 1, 21, 24, 64, 69, 129, 136, 216, 225, 325, 336, 456, 469, 609, 624, 784, 801, 981, 1000, 1200, 1221, 1441, 1464, 1704, 1729, 1989, 2016, 2296, 2325, 2625, 2656, 2976, 3009, 3349, 3384, 3744, 3781, 4161, 4200, 4600, 4641, 5061, 5104, 5544, 5589, 6049, 6096, 6576, 6625
Offset: 0

Views

Author

Omar E. Pol, Jun 06 2018

Keywords

Comments

a(25) = 1729 is the Hardy-Ramanujan number.
Numbers k such that 11*k + 25 is a square. - Bruno Berselli, Jun 08 2018
Partial sums of A317320. - Omar E. Pol, Jul 28 2018

Crossrefs

Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), this sequence (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Mathematica
    With[{pp = 24, nn = 55}, {0}~Join~Riffle[Array[PolygonalNumber[pp, #] &, Ceiling[nn/2]], Array[PolygonalNumber[pp, -#] &, Ceiling[nn/2]]]] (* Michael De Vlieger, Jun 06 2018 *)
    Table[(22 n (n + 1) + 9 (2 n + 1) (-1)^n - 9)/8, {n, 0, 50}] (* Bruno Berselli, Jun 08 2018 *)
    CoefficientList[ Series[-x (x^2 + 20x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 50}], x] (* or *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 21, 24, 64}, 50] (* Robert G. Wilson v, Jul 28 2018 *)
  • PARI
    concat(0, Vec(x*(1 + 20*x + x^2)/((1 + x)^2*(1 - x)^3) + O(x^40))) \\ Colin Barker, Jun 12 2018

Formula

From Bruno Berselli, Jun 08 2018: (Start)
G.f.: x*(1 + 20*x + x^2)/((1 + x)^2*(1 - x)^3).
a(n) = a(-n-1) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = (22*n*(n + 1) + 9*(2*n + 1)*(-1)^n - 9)/8. Therefore:
a(n) = n*(11*n + 20)/4, if n is even, or (n + 1)*(11*n - 9)/4 otherwise.
(2*n - 1)*a(n) + (2*n + 1)*a(n-1) - n*(11*n^2 - 10) = 0. (End)
Sum_{n>=1} 1/a(n) = (11 + 10*Pi*cot(Pi/11))/100. - Amiram Eldar, Mar 01 2022