A303838 Number of z-forests with least common multiple n > 1.
0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 8, 1, 1, 2, 2, 2, 5, 1, 2, 2, 4, 1, 8, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 16, 1, 2, 3, 1, 2, 8, 1, 3, 2, 8, 1, 7, 1, 2, 3, 3, 2, 8, 1, 5, 1, 2, 1, 16, 2, 2
Offset: 1
Keywords
Examples
The a(60) = 16 z-forests together with the corresponding multiset systems (see A112798, A302242) are the following. (60): {{1,1,2,3}} (3,20): {{2},{1,1,3}} (4,15): {{1,1},{2,3}} (4,30): {{1,1},{1,2,3}} (5,12): {{3},{1,1,2}} (6,20): {{1,2},{1,1,3}} (10,12): {{1,3},{1,1,2}} (12,15): {{1,1,2},{2,3}} (12,20): {{1,1,2},{1,1,3}} (15,20): {{2,3},{1,1,3}} (3,4,5): {{2},{1,1},{3}} (3,4,10): {{2},{1,1},{1,3}} (4,5,6): {{1,1},{3},{1,2}} (4,6,10): {{1,1},{1,2},{1,3}} (4,6,15): {{1,1},{1,2},{2,3}} (4,10,15): {{1,1},{1,3},{2,3}}
Links
- Gus Wiseman, Table of n, a(n) for n = 1..250
- Roland Bacher, On the enumeration of labelled hypertrees and of labelled bipartite trees, arXiv:1102.2708 [math.CO], 2011.
Crossrefs
Programs
-
Mathematica
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]]; zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s]; Table[Length[Select[Rest[Subsets[Rest[Divisors[n]]]],Function[s,LCM@@s==n&&And@@Table[zensity[Select[s,Divisible[m,#]&]]==-1,{m,zsm[s]}]&&Select[Tuples[s,2],UnsameQ@@#&&Divisible@@#&]=={}]]],{n,100}]
Comments