A303842 Triangle read by rows: T(s,n) (s>=1 and 2<=n<=s+1) = number of trees with n nodes and positive integer edge labels with label sum s.
1, 1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 2, 6, 6, 6, 1, 3, 9, 15, 16, 11, 1, 3, 13, 26, 43, 37, 23, 1, 4, 17, 46, 88, 116, 96, 47, 1, 4, 23, 68, 169, 273, 329, 239, 106, 1, 5, 28, 103, 287, 585, 869, 918, 622, 235, 1, 5, 35, 141, 467, 1104, 2031, 2695, 2609, 1607, 551
Offset: 1
Examples
The triangle starts 1; 1 1; 1 1 2; 1 2 3 3; 1 2 6 6 6; 1 3 9 15 16 11; 1 3 13 26 43 37 23; 1 4 17 46 88 116 96 47; 1 4 23 68 169 273 329 239 106; 1 5 28 103 287 585 869 918 622 235; 1 5 35 141 467 1104 2031 2695 2609 1607 551; 1 6 42 195 711 1972 4211 6882 8399 ... 4235 1301; 1 6 50 253 1051 3270 8108 15513 23152 ... ... ; 1 7 58 330 1489 5222 14552 32191 56291 ... ... ; 1 7 68 412 2063 7958 24846 62014 124958 ... ... ;
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- R. J. Mathar, Labeled Trees with fixed node label sum, vixra:1805.0205 (2018).
Crossrefs
Programs
-
PARI
EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)} b(n)={my(v=[1]); for(i=1, n, v=concat([1], v + EulerMT(y*v))); Ser(v)*y*(1-x)} seq(n)={my(g=b(n)); Vec(g + (substvec(g, [x,y], [x^2,y^2]) - g^2)*x/(2*(1-x)) - y)} {my(A=seq(15)); for(n=1, #A, print(Vecrev(A[n]/y^2)))} \\ Andrew Howroyd, May 20 2018