A303843 The number of unlabeled trees with n nodes rooted at 3 indistinguishable roots.
0, 0, 1, 4, 15, 51, 175, 573, 1866, 5978, 19000, 59859, 187503, 584012, 1811212, 5595239, 17228943, 52898764, 162013452, 495100454, 1510029296, 4597430832, 13975327501, 42422033217, 128606150706, 389423872694, 1177925775148, 3559477190797, 10746362772325
Offset: 1
Keywords
Examples
a(3)=1 (all nodes are roots). a(4)=4: the linear tree has the non-root node either at a leaf or not, and the star tree has the non-root node either at the center or at a leaf.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
Programs
-
Mathematica
m = 30; T[_] = 0; Do[T[x_] = x Exp[Sum[T[x^k]/k, {k, 1, j}]] + O[x]^j // Normal, {j, 1, m}]; g[x_] = T[x]/(1 - T[x]) + O[x]^m // Normal; g[x]((g[x]^3 + 3g[x]g[x^2] + 2g[x^3] + 3g[x]^2 + 3g[x^2])/(6(1 + g[x]))) + O[x]^m // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Feb 16 2020, after Andrew Howroyd *)
-
PARI
\\ here TreeGf is gf of A000081 TreeGf(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)} seq(n) = {my(T=TreeGf(n)); my(g=T/(1-T)); T*(g^3 + 3*subst(g,x,x^2)*g + 2*subst(g,x,x^3) + 3*g^2 + 3*subst(g,x,x^2))/6} concat([0,0], Vec(seq(30))) \\ Andrew Howroyd, May 03 2018
Formula
G.f.: g(x)*(g(x)^3 + 3*g(x)*g(x^2) + 2*g(x^3) + 3*g(x)^2 + 3*g(x^2))/(6*(1 + g(x))) where g(x) = T(x)/(1-T(x)) and T(x) is the g.f. of A000081. - Andrew Howroyd, May 03 2018
Extensions
Terms a(11) and beyond from Andrew Howroyd, May 03 2018
Comments