A303871 Number of noncrossing partitions up to rotation and reflection composed of n blocks of size 5.
1, 1, 1, 3, 11, 60, 423, 3381, 29335, 266703, 2507232, 24177705, 238003111, 2383370158, 24217426745, 249182213284, 2592138293117, 27225668134063, 288405507217589, 3078471666603235, 33085393411436772, 357782389095170193, 3890765813426578535, 42527471172438573757
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Programs
-
Mathematica
u[n_, k_, r_] := (r*Binomial[k*n + r, n]/(k*n + r)); e[n_, k_] := Sum[ u[j, k, 1 + (n - 2*j)*k/2], {j, 0, n/2}] c[n_, k_] := If[n == 0, 1, (DivisorSum[n, EulerPhi[n/#]*Binomial[k*#, #] &] + DivisorSum[GCD[n - 1, k], EulerPhi[#]*Binomial[n*k/#, (n - 1)/#] &])/(k*n) - Binomial[k*n, n]/(n*(k - 1) + 1)]; T[n_, k_] := (1/2)*(c[n, k] + If[n == 0, 1, If[OddQ[k], If[OddQ[n], 2*u[Quotient[n, 2], k, (k + 1)/2], u[n/2, k, 1] + u[n/2 - 1, k, k]], e[n, k] + If[OddQ[n], u[Quotient[n, 2], k, k/2]]]/2]) /. Null -> 0; a[n_] := T[n, 5]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 14 2018, after Andrew Howroyd and A303929 *)
Formula
a(n) ~ 5^(5*n - 1/2) / (sqrt(Pi) * n^(5/2) * 2^(8*n + 9/2)). - Vaclav Kotesovec, Jun 01 2022