cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303871 Number of noncrossing partitions up to rotation and reflection composed of n blocks of size 5.

Original entry on oeis.org

1, 1, 1, 3, 11, 60, 423, 3381, 29335, 266703, 2507232, 24177705, 238003111, 2383370158, 24217426745, 249182213284, 2592138293117, 27225668134063, 288405507217589, 3078471666603235, 33085393411436772, 357782389095170193, 3890765813426578535, 42527471172438573757
Offset: 0

Views

Author

Andrew Howroyd, May 01 2018

Keywords

Crossrefs

Column k=5 of A303929.
Cf. A054365.

Programs

  • Mathematica
    u[n_, k_, r_] := (r*Binomial[k*n + r, n]/(k*n + r));
    e[n_, k_] := Sum[ u[j, k, 1 + (n - 2*j)*k/2], {j, 0, n/2}]
    c[n_, k_] := If[n == 0, 1, (DivisorSum[n, EulerPhi[n/#]*Binomial[k*#, #] &] + DivisorSum[GCD[n - 1, k], EulerPhi[#]*Binomial[n*k/#, (n - 1)/#] &])/(k*n) - Binomial[k*n, n]/(n*(k - 1) + 1)];
    T[n_, k_] := (1/2)*(c[n, k] + If[n == 0, 1, If[OddQ[k], If[OddQ[n], 2*u[Quotient[n, 2], k, (k + 1)/2], u[n/2, k, 1] + u[n/2 - 1, k, k]], e[n, k] + If[OddQ[n], u[Quotient[n, 2], k, k/2]]]/2]) /. Null -> 0;
    a[n_] := T[n, 5];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 14 2018, after Andrew Howroyd and A303929 *)

Formula

a(n) ~ 5^(5*n - 1/2) / (sqrt(Pi) * n^(5/2) * 2^(8*n + 9/2)). - Vaclav Kotesovec, Jun 01 2022