A303874 Number of noncrossing partitions of an n-set up to rotation with all blocks having a prime number of elements.
1, 0, 1, 1, 1, 2, 3, 5, 8, 17, 37, 71, 179, 366, 919, 2069, 5027, 12053, 29098, 71846, 175485, 437438, 1087122, 2723326, 6860525, 17301606, 43957596, 111748571, 285591775, 731432424, 1879009622, 4841510973, 12500324496, 32366232373, 83962263464, 218309244314
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
Programs
-
PARI
\\ number of partitions with restricted block sizes NCPartitionsModCyclic(v)={ my(n=#v); my(p=serreverse(x/(1 + sum(k=1, #v, x^k*v[k])) + O(x^2*x^n) )/x); my(vars=variables(p)); my(varpow(r,d)=substvec(r + O(x^(n\d+1)), vars, apply(t->t^d, vars))); my(q=x*deriv(p)/p); my(T=sum(k=1, #v, my(t=v[k]); if(t, x^k*t*sumdiv(k, d, eulerphi(d) * varpow(p,d)^(k/d))/k))); T + 2 + intformal(sum(d=1,n,eulerphi(d)*varpow(q,d))/x) - p } Vec(NCPartitionsModCyclic(vector(40, k, isprime(k))))
Comments