A303912 Array read by antidiagonals: T(n,k) is the number of (planar) unlabeled k-ary cacti having n polygons.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 6, 6, 1, 1, 1, 5, 10, 19, 10, 1, 1, 1, 6, 15, 44, 57, 28, 1, 1, 1, 7, 21, 85, 197, 258, 63, 1, 1, 1, 8, 28, 146, 510, 1228, 1110, 190, 1, 1, 1, 9, 36, 231, 1101, 4051, 7692, 5475, 546, 1, 1, 1, 10, 45, 344, 2100, 10632, 33130, 52828, 27429, 1708, 1
Offset: 0
Examples
Array begins: =============================================================== n\k| 1 2 3 4 5 6 7 8 ---+----------------------------------------------------------- 0 | 1 1 1 1 1 1 1 1 ... 1 | 1 1 1 1 1 1 1 1 ... 2 | 1 2 3 4 5 6 7 8 ... 3 | 1 3 6 10 15 21 28 36 ... 4 | 1 6 19 44 85 146 231 344 ... 5 | 1 10 57 197 510 1101 2100 3662 ... 6 | 1 28 258 1228 4051 10632 23884 47944 ... 7 | 1 63 1110 7692 33130 107062 285390 662628 ... 8 | 1 190 5475 52828 291925 1151802 3626295 9711032 ... 9 | 1 546 27429 373636 2661255 12845442 47813815 147766089 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1274
- Miklos Bona, Michel Bousquet, Gilbert Labelle, Pierre Leroux, Enumeration of m-ary cacti, arXiv:math/9804119 [math.CO], 1998-1999.
- Wikipedia, Cactus graph
- Index entries for sequences related to cacti
Crossrefs
Programs
-
Mathematica
T[0, _] = 1; T[n_, k_] := DivisorSum[n, EulerPhi[n/#] Binomial[k #, #]&]/n - (k-1) Binomial[n k, n]/((k-1) n + 1); Table[T[n-k, k], {n, 0, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, May 22 2018 *)
-
PARI
T(n,k)={if(n==0, 1, sumdiv(n, d, eulerphi(n/d)*binomial(k*d, d))/n - (k-1)*binomial(k*n, n)/((k-1)*n+1))}
Formula
T(n,k) = (Sum_{d|n} phi(n/d)*binomial(k*d, d))/n - (k-1)*binomial(k*n, n)/((k-1)*n+1) for n > 0.
T(n,k) ~ A070914(n,k-1)/n for fixed k > 1.
Comments