A303913 Array read by antidiagonals: T(n,k) is the number of (planar) unlabeled asymmetric k-ary cacti having n polygons.
1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 3, 2, 0, 1, 1, 0, 6, 10, 8, 0, 1, 1, 0, 10, 28, 54, 18, 0, 1, 1, 0, 15, 60, 193, 222, 61, 0, 1, 1, 0, 21, 110, 505, 1140, 1107, 170, 0, 1, 1, 0, 28, 182, 1095, 3876, 7688, 5346, 538, 0, 1, 1, 0, 36, 280, 2093, 10326, 33125, 52364, 27399, 1654, 0
Offset: 0
Examples
Array begins: =============================================================== n\k| 1 2 3 4 5 6 7 8 ---+----------------------------------------------------------- 0 | 1 1 1 1 1 1 1 1 ... 1 | 1 1 1 1 1 1 1 1 ... 2 | 0 0 0 0 0 0 0 0 ... 3 | 0 1 3 6 10 15 21 28 ... 4 | 0 2 10 28 60 110 182 280 ... 5 | 0 8 54 193 505 1095 2093 3654 ... 6 | 0 18 222 1140 3876 10326 23394 47208 ... 7 | 0 61 1107 7688 33125 107056 285383 662620 ... 8 | 0 170 5346 52364 290700 1149126 3621150 9702008 ... 9 | 0 538 27399 373560 2661100 12845166 47813367 147765409 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1274
- Miklos Bona, Michel Bousquet, Gilbert Labelle, Pierre Leroux, Enumeration of m-ary cacti, arXiv:math/9804119 [math.CO], 1998-1999.
- Wikipedia, Cactus graph
- Index entries for sequences related to cacti
Crossrefs
Programs
-
Mathematica
T[0, _] = 1; T[n_, k_] := DivisorSum[n, MoebiusMu[n/#] Binomial[k #, #] &]/n - (k-1) Binomial[n k, n]/((k-1) n + 1); Table[T[n-k, k], {n, 0, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, May 22 2018 *)
-
PARI
T(n,k)={if(n==0, 1, sumdiv(n, d, moebius(n/d)*binomial(k*d, d))/n - (k-1)*binomial(k*n, n)/((k-1)*n+1))}
Formula
T(n,k) = (Sum_{d|n} mu(n/d)*binomial(k*d, d))/n - (k-1)*binomial(k*n, n)/((k-1)*n+1) for n > 0.
Comments