cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303923 G.f. A(x) satisfies: 1 = Sum_{n>=0} ( 1 + x*A(x)^n - A(x) )^n.

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 22, 92, 419, 2066, 10863, 60459, 354381, 2177439, 13979759, 93527819, 650509643, 4694372980, 35086564926, 271174745565, 2164066408692, 17808271012127, 150925549288155, 1315804758238582, 11787981398487995, 108409978503340041, 1022519935940220983, 9882436548778410911, 97788364370359938816
Offset: 0

Views

Author

Paul D. Hanna, May 03 2018

Keywords

Comments

Compare to: 1 = Sum_{n>=0} ( 1 + x*G(x)^k - G(x) )^n holds trivially for fixed k>0 when G(x) = 1 + x*G(x)^k ; this sequence explores the case when k varies with n.

Examples

			G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 6*x^5 + 22*x^6 + 92*x^7 + 419*x^8 + 2066*x^9 + 10863*x^10 + 60459*x^11 + 354381*x^12 + ...
such that
1 = 1 + (1 + x*A(x) - A(x)) + (1 + x*A(x)^2 - A(x))^2 + (1 + x*A(x)^3 - A(x))^3 + (1 + x*A(x)^4 - A(x))^4 + (1 + x*A(x)^5 - A(x))^5 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=0,n, A=concat(A,0); A[#A] = Vec( sum(m=0,#A, ( 1 + x*Ser(A)^m - Ser(A))^m ) )[#A] ); A[n+1]}
    for(n=0,30, print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} ( 1 + x*A(x)^n - A(x) )^n.
(2) 1 = Sum_{n>=0} x^n * A(x)^(n^2) / (1 + (A(x)-1)*A(x)^n)^(n+1). - Paul D. Hanna, Dec 11 2018
G.f.: x/Series_Reversion( x*F(x) ) such that 1 = Sum_{n>=0} ((1 + x*F(x))^(n+1) - F(x))^n, where F(x) is the g.f. of A303924.
G.f.: sqrt( x/Series_Reversion( x*G(x)^2 ) ) such that 1 = Sum_{n>=0} ((1 + x*G(x))^(n+2) - G(x))^n, where G(x) is the g.f. of A303925.