cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303925 G.f. A(x) satisfies: 1 = Sum_{n>=0} ( 1 + x*A(x)^(n+2) - A(x) )^n.

Original entry on oeis.org

1, 1, 3, 12, 56, 288, 1587, 9222, 55957, 352267, 2290842, 15343839, 105634437, 746478622, 5409932286, 40189454704, 305972524737, 2387238374532, 19090018863000, 156496468777604, 1315509548959765, 11341506519584442, 100300906407392783, 909967403153604712, 8468614126450656268, 80832677102193209308, 791071858022525348235
Offset: 0

Views

Author

Paul D. Hanna, May 03 2018

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 56*x^4 + 288*x^5 + 1587*x^6 + 9222*x^7 + 55957*x^8 + 352267*x^9 + 2290842*x^10 + 15343839*x^11 + ...
such that
1 = 1 + (1 + x*A(x)^3 - A(x)) + (1 + x*A(x)^4 - A(x))^2 + (1 + x*A(x)^5 - A(x))^3 + (1 + x*A(x)^6 - A(x))^4 + (1 + x*A(x)^7 - A(x))^5 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=0,n, A=concat(A,0); A[#A] = Vec( sum(m=0,#A, ( 1 + x*Ser(A)^(m+2) - Ser(A))^m ) )[#A] ); A[n+1]}
    for(n=0,30, print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} ( 1 + x*A(x)^(n+2) - A(x) )^n.
(2) 1 = Sum_{n>=0} x^n * A(x)^(n*(n+2)) / (1 + (A(x)-1)*A(x)^n)^(n+1). - Paul D. Hanna, Dec 11 2018
G.f.: 1/x*Series_Reversion( x/F(x) ) such that 1 = Sum_{n>=0} ((1 + x*F(x))^(n+1) - F(x))^n, where F(x) is the g.f. of A303924.
G.f.: sqrt( 1/x*Series_Reversion( x/G(x)^2 ) ) such that 1 = Sum_{n>=0} ((1 + x*G(x))^n - G(x))^n, where G(x) is the g.f. of A303923.