A303930 Number of no-leaf subgraphs of the 2 X n grid up to horizontal and vertical reflection.
1, 2, 4, 10, 26, 76, 232, 750, 2493, 8514, 29524, 103708, 367225, 1308542, 4682276, 16807286, 60462082, 217855460, 785863048, 2837177434, 10249053629, 37039804078, 133902392980, 484178868612, 1751030978481, 6333341963706, 22909148647012, 82872738727330
Offset: 1
Keywords
Examples
For n = 4 the a(4) = 10 subgraphs of the 2 X 4 grid are: + + + + +---+ + + + +---+ + | | | | + + + +, +---+ + +, + +---+ +, +---+ +---+ +---+---+ + +---+---+---+ | | | | | | | | | +---+ +---+, +---+---+ +, +---+---+---+, +---+---+---+ +---+---+---+ +---+---+---+ | | | | | | | | | | +---+---+---+, +---+---+---+, +---+ +---+, and +---+---+ + | | | +---+---+ +.
Links
- Peter Kagey, Table of n, a(n) for n = 1..1000
Crossrefs
Formula
Conjectures from Colin Barker, May 03 2018: (Start)
G.f.: x*(1 - 6*x + 4*x^2 + 30*x^3 - 45*x^4 - 22*x^5 + 60*x^6 - 20*x^7) / ((1 - 3*x + x^2)*(1 - 5*x + 5*x^2)*(1 - 5*x^2 + 5*x^4)).
a(n) = 8*a(n-1) - 16*a(n-2) - 20*a(n-3) + 95*a(n-4) - 60*a(n-5) - 80*a(n-6) + 100*a(n-7) - 25*a(n-8) for n>8.
(End)
Comments