A303935 Size of orbit of n under repeated application of sum of factorial of digits of n.
2, 1, 1, 16, 8, 10, 15, 32, 36, 35, 2, 2, 17, 33, 13, 10, 15, 32, 36, 35, 17, 17, 9, 37, 7, 12, 6, 8, 33, 31, 33, 33, 37, 18, 34, 31, 48, 39, 24, 8, 13, 13, 7, 34, 30, 54, 42, 39, 29, 52, 10, 10, 12, 31, 54, 10, 24, 21, 41, 24, 15, 15, 6, 48, 42, 24, 12, 42
Offset: 0
Examples
For n = 4, 4!=24, 2!+4!=26, 2!+6!=722, 7!+2!+2!=5044, 5!+0!+4!+4!=169, 1!+6!+9!=363601, 3!+6!+3!+6!+0!+1!=1454, then 1!+4!+5!+4!=169 which already belongs to the chain, so a(4) = length of [4, 24, 26, 722, 5044, 169, 363601, 1454] = 8.
Links
- Philippe Guglielmetti, Table of n, a(n) for n = 0..1000
- S. S. Gupta, Sum of the factorials of the digits of integers, The Mathematical Gazette, 88-512 (2004), 258-261.
- Project Euler, Problem 74: Digit factorial chains
Programs
-
Mathematica
Array[Length@ NestWhileList[Total@ Factorial@ IntegerDigits@ # &, #, UnsameQ, All, 100, -1] &, 68, 0] (* Michael De Vlieger, May 10 2018 *)
-
PARI
f(n) = if (!n, n=1); my(d=digits(n)); sum(k=1, #d~, d[k]!); a(n) = {my(v = [n], vs = Set(v)); for (k=1, oo, new = f(n); if (vecsearch(vs, new), return (#vs)); v = concat(v, new); vs = Set(v); n = new;);} \\ Michel Marcus, May 18 2018
-
Python
for n in count(0): l=[] i=n while i not in l: l.append(i) i=sum(map(factorial,map(int,str(i)))) print(n,len(l))
Comments