A303987 Triangle read by rows: T(n, k) = (binomial(n,k)*binomial(n+k,k))^2 = A063007(n, k)^2, for n >= 0, k = 0..n.
1, 1, 4, 1, 36, 36, 1, 144, 900, 400, 1, 400, 8100, 19600, 4900, 1, 900, 44100, 313600, 396900, 63504, 1, 1764, 176400, 2822400, 9922500, 7683984, 853776, 1, 3136, 571536, 17640000, 133402500, 276623424, 144288144, 11778624, 1, 5184, 1587600, 85377600, 1200622500, 5194373184, 7070119056, 2650190400, 165636900
Offset: 0
Examples
The triangle T begins: n\k 0 1 2 3 4 5 6 7 ... 0: 1 1: 1 4 2: 1 36 36 3: 1 144 900 400 4: 1 400 8100 19600 4900 5: 1 900 44100 313600 396900 63504 6: 1 1764 176400 2822400 9922500 7683984 853776 7: 1 3136 571536 17640000 133402500 276623424 144288144 11778624 ---------------------------------------------------------------------------- row n = 8: 1 5184 1587600 85377600 1200622500 5194373184 7070119056 2650190400 165636900, row n = 9: 1 8100 3920400 341510400 8116208100 63631071504 176752976400 169612185600 47869064100 2363904400, row n = 10: 1 12100 8820900 1177862400 44188244100 572679643536 2828047622400 5446435737600 3877394192100 853369488400 34134779536. ...
Crossrefs
Programs
-
GAP
Flat(List([0..10],n->List([0..n],k->(Binomial(n,k)*Binomial(n+k,k))^2))); # Muniru A Asiru, May 15 2018
-
Mathematica
T[n_, k_] := (Gamma[k + n + 1]/(Gamma[k + 1]^2*Gamma[-k + n + 1]))^2; Flatten[Table[T[n, k], {n, 0, 8}, {k, 0, n}]] (* Peter Luschny, May 14 2018 *)
Comments