cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303987 Triangle read by rows: T(n, k) = (binomial(n,k)*binomial(n+k,k))^2 = A063007(n, k)^2, for n >= 0, k = 0..n.

Original entry on oeis.org

1, 1, 4, 1, 36, 36, 1, 144, 900, 400, 1, 400, 8100, 19600, 4900, 1, 900, 44100, 313600, 396900, 63504, 1, 1764, 176400, 2822400, 9922500, 7683984, 853776, 1, 3136, 571536, 17640000, 133402500, 276623424, 144288144, 11778624, 1, 5184, 1587600, 85377600, 1200622500, 5194373184, 7070119056, 2650190400, 165636900
Offset: 0

Views

Author

Wolfdieter Lang, May 14 2018

Keywords

Comments

The row sums of this triangle are b(n) = A005259(n), for n >= 0. This sequence b was used in R. Apéry's 1979 proof of the irrationality of Zeta(3). See A005259 for references and links.
Row polynomials R(n, x) := Sum_{k=0..n} T(n, k)*x^k = hypergeometric([-n, -n, n+1, n+1], [1, 1, 1], x), hence b(n) = hypergeometric([-n, -n, n+1, n+1], [1, 1, 1], 1) (see the formula in A005259 given by K. A. Penson. This is the solution to Exercise 2.14 of the Koepf reference given there, p. 29).

Examples

			The triangle T begins:
n\k  0    1       2        3          4          5          6          7 ...
0:   1
1:   1    4
2:   1   36      36
3:   1  144     900      400
4:   1  400    8100    19600       4900
5:   1  900   44100   313600     396900      63504
6:   1 1764  176400  2822400    9922500    7683984     853776
7:   1 3136  571536 17640000  133402500  276623424  144288144   11778624
----------------------------------------------------------------------------
row n = 8:   1 5184 1587600 85377600 1200622500 5194373184 7070119056 2650190400 165636900,
row n = 9: 1 8100 3920400 341510400 8116208100 63631071504 176752976400 169612185600 47869064100 2363904400,
row n = 10: 1 12100 8820900 1177862400 44188244100 572679643536 2828047622400 5446435737600 3877394192100 853369488400 34134779536.
...
		

Crossrefs

The column sequences (without zeros) are A000012, A035287(n+1) = 4*A000217(n)^2, 36*A288876, 400*A000579(n+6)^2, 4900*A000581(n+8)^2, 63504*A001287(n+10)^2, ...

Programs

  • GAP
    Flat(List([0..10],n->List([0..n],k->(Binomial(n,k)*Binomial(n+k,k))^2))); # Muniru A Asiru, May 15 2018
  • Mathematica
    T[n_, k_] := (Gamma[k + n + 1]/(Gamma[k + 1]^2*Gamma[-k + n + 1]))^2;
    Flatten[Table[T[n, k], {n, 0, 8}, {k, 0, n}]] (* Peter Luschny, May 14 2018 *)

Formula

T(n, k) = (binomial(n,k)*binomial(n+k,k))^2 = A063007(n, k)^2, for n >= 0 and k = 0..n.
T(n, k) = (binomial(n+k, 2*k)*cbi(k))^2, with cbi(k) = A000984(k) = binomial(2*k, k), and cbi(k)^2 = A002894(k).
G.f. for column sequences (without leading zeros):
cbi(k)^2*P2(2*k, x)/(1 - x)^(4*k+1), with the row polynomials of A008459 (Pascal entries squared) P2(2*k, x) = Sum_{j=0..2*k} A008459(2*k, j)*x^j. For a proof see the general comment in A288876 on the diagonals and columns of A008459.