A303993 Numbers whose sum of divisors is the cube of one of their divisors.
1, 102, 8148, 63720, 66120, 71880, 196896, 446040, 452760, 462840, 471960, 503160, 517320, 544920, 549240, 554280, 559320, 575880, 756400, 1458912, 1499232, 1579872, 1634040, 1659960, 1748520, 5294800, 9740640, 10103520, 11103456, 11438280, 11583264, 11619720, 11915640
Offset: 1
Examples
Divisors of 102 are 1, 2, 3, 6, 17, 34, 51, 102 and their sum is 216 = 6^3.
Programs
-
Maple
with(numtheory): P:=proc(q) local a,k,n; for n from 1 to q do a:=sort([op(divisors(n))]); for k from 1 to nops(a) do if sigma(n)=a[k]^3 then print(n); break; fi; od; od; end: P(10^9);
-
Mathematica
Select[Range[10^6], Mod[#, DivisorSigma[1, #]^(1/3)] == 0 &] (* Michael De Vlieger, May 06 2018 *)
-
PARI
isok(n) = (n==1) || (ispower(s=sigma(n), 3) && !(n % sqrtnint(s, 3))); \\ Michel Marcus, May 05 2018
Comments