A303999 Numbers whose sum of divisors is the seventh power of one of their divisors.
1, 112890, 120054, 124338, 133998, 137058, 139962, 36705396, 39118548, 52166212, 4661585292, 4677211812, 4851457716, 4968055596, 6168611160, 6232929480, 6236525932, 6261521812, 6311227560, 6362855640, 6430524120, 6468862876, 6488003880, 6500134440, 6506266732
Offset: 1
Examples
Divisors of 112890 are 1, 2, 3, 5, 6, 10, 15, 30, 53, 71, 106, 142, 159, 213, 265, 318, 355, 426, 530, 710, 795, 1065, 1590, 2130, 3763, 7526, 11289, 18815, 22578, 37630, 56445, 112890 and their sum is 279936 = 6^7.
Programs
-
Maple
with(numtheory): P:=proc(q) local a,k,n; for n from 1 to q do a:=sort([op(divisors(n))]); for k from 1 to nops(a) do if sigma(n)=a[k]^7 then print(n); break; fi; od; od; end: P(10^9);
-
Mathematica
Select[Range[150000], IntegerQ[t = DivisorSigma[1, #]^(1/7)] && Mod[#, t] == 0 &] (* Giovanni Resta, May 04 2018 *)
-
PARI
isok(n) = (n==1) || (ispower(s=sigma(n), 7) && !(n % sqrtnint(s, 7))); \\ Michel Marcus, May 05 2018
Extensions
a(11)-a(25) from Giovanni Resta, May 04 2018
Comments