cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303999 Numbers whose sum of divisors is the seventh power of one of their divisors.

Original entry on oeis.org

1, 112890, 120054, 124338, 133998, 137058, 139962, 36705396, 39118548, 52166212, 4661585292, 4677211812, 4851457716, 4968055596, 6168611160, 6232929480, 6236525932, 6261521812, 6311227560, 6362855640, 6430524120, 6468862876, 6488003880, 6500134440, 6506266732
Offset: 1

Views

Author

Paolo P. Lava, May 04 2018

Keywords

Comments

Subset of A048257.

Examples

			Divisors of 112890 are 1, 2, 3, 5, 6, 10, 15, 30, 53, 71, 106, 142, 159, 213, 265, 318, 355, 426, 530, 710, 795, 1065, 1590, 2130, 3763, 7526, 11289, 18815, 22578, 37630, 56445, 112890 and their sum is 279936 = 6^7.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,n;
    for n from 1 to q do a:=sort([op(divisors(n))]);
    for k from 1 to nops(a) do if sigma(n)=a[k]^7 then print(n); break; fi; od; od; end: P(10^9);
  • Mathematica
    Select[Range[150000], IntegerQ[t = DivisorSigma[1, #]^(1/7)] && Mod[#, t] == 0 &] (* Giovanni Resta, May 04 2018 *)
  • PARI
    isok(n) = (n==1) || (ispower(s=sigma(n), 7) && !(n % sqrtnint(s, 7))); \\ Michel Marcus, May 05 2018

Extensions

a(11)-a(25) from Giovanni Resta, May 04 2018