cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304001 Number of permutations of [n] whose up-down signature has a nonnegative total sum.

Original entry on oeis.org

1, 1, 1, 5, 12, 93, 360, 3728, 20160, 259535, 1814400, 27820524, 239500800, 4251096402, 43589145600, 877606592736, 10461394944000, 235288904377275, 3201186852864000, 79476406782222500, 1216451004088320000, 33020655481590446318, 562000363888803840000
Offset: 0

Views

Author

Alois P. Heinz, May 04 2018

Keywords

Comments

The up-down signature has (+1) for each ascent and (-1) for each descent.

Crossrefs

Bisections give: A002674 (even part), A179457(2n+1,n+1) (odd part).
Cf. A000246 (for nonnegative partial sums), A006551 (total sums are 0 or 1), A008292, A303287.

Programs

  • Maple
    b:= proc(u, o, t) option remember; (n->
         `if`(t>=n, n!, `if`(t<-n, 0,
          add(b(u-j, o+j-1, t-1), j=1..u)+
          add(b(u+j-1, o-j, t+1), j=1..o))))(u+o)
        end:
    a:= n-> `if`(n=0, 1, add(b(j-1, n-j, 0), j=1..n)):
    seq(a(n), n=0..25);
    # second Maple program:
    a:= n-> `if`(irem(n, 2, 'r')=0, ceil(n!/2),
             add(combinat[eulerian1](n, j), j=0..r)):
    seq(a(n), n=0..25);
  • Mathematica
    Eulerian1[n_, k_] := If[k == 0, 1, If[n == 0, 0, Sum[(-1)^j (k - j + 1)^n Binomial[n + 1, j], {j, 0, k + 1}]]];
    a[n_] := Module[{r, m}, {r, m} = QuotientRemainder[n, 2]; If[m == 0, Ceiling[n!/2], Sum[Eulerian1[n, j], {j, 0, r}]]];
    a /@ Range[0, 25] (* Jean-François Alcover, Mar 26 2021, after 2nd Maple program *)