A304011 Number of same-sized pairs of subsets of set of n numbers that might have the same sum.
0, 0, 0, 1, 5, 20, 70, 231, 735, 2289, 7029, 21384, 64636, 194480, 583232, 1744847, 5210687, 15540023, 46299143, 137837666, 410127806, 1219804541, 3626853647, 10781440394, 32045015650, 95236794600, 283027305300, 841096898745, 2499595030581, 7428627412260
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..2100
- Jean-Luc Baril, Richard Genestier, Sergey Kirgizov, Pattern distributions in Dyck paths with a first return decomposition constrained by height, arXiv:1911.03119 [math.CO], 2019.
- Project Euler, Problem 106: Special subset sums: meta-testing
Crossrefs
Cf. A002054.
Programs
-
Mathematica
Table[1/2 + Hypergeometric2F1[(1 - n)/2, -n/2, 1, 4]/2 - Hypergeometric2F1[(1 - n)/2, -n/2, 2, 4], {n, 1, 30}] (* Vaclav Kotesovec, Aug 04 2018 *) Join[{0,0,0,1},RecurrenceTable[{(n-4)*(n+2)*a[n]==(3*n^2-7*n-5)*a[n-1]+ (n-3)*(n-1)*a[n-2]-3*(n-2)*(n-1)*a[n-3],a[2]==0,a[3]==0,a[4]==1},a,{n,5,25}]] (* Georg Fischer, Dec 06 2019 *)
-
PARI
a(n) = sum(i=1, n\2, binomial(n, 2*i)*binomial(2*i-1, i-2)); \\ Michel Marcus, Jul 04 2018
Formula
a(n) = Sum_{i=1..floor(n/2)} binomial(n, 2*i)*A002054(i-1).
From Vaclav Kotesovec, Aug 04 2018: (Start)
D-finite with recurrence: (n-4)*(n+2)*a(n) = (3*n^2 - 7*n - 5)*a(n-1) + (n-3)*(n-1)*a(n-2) - 3*(n-2)*(n-1)*a(n-3) for n >= 5.
a(n) ~ 3^(n + 1/2) / (4*sqrt(Pi*n)). (End)
Extensions
a(23) corrected by Georg Fischer, Dec 06 2019
Comments