A304021 Number of partitions of n into at most 1 copy of 1^3, 2 copies of 2^3, 3 copies of 3^3, ... .
1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Keywords
Examples
n | | a(n) -----+--------------------+------ 1 | 1 | 1 8 | 8 | 1 9 | 8+1 | 1 16 | 8+8 | 1 17 | 8+8+1 | 1 27 | 27 | 1 28 | 27+1 | 1 35 | 27+8 | 1 36 | 27+8+1 | 1 43 | 27+8+8 | 1 ... 81 | 64+8+8+1, 27+27+27 | 2
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..5000
Formula
G.f.: Product_{k>=1} (1-x^(k^3*(k+1)))/(1-x^(k^3)).