cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304066 a(n) = Sum_{k=1..n} k*floor(n/prime(k)).

Original entry on oeis.org

0, 1, 3, 4, 7, 10, 14, 15, 17, 21, 26, 29, 35, 40, 45, 46, 53, 56, 64, 68, 74, 80, 89, 92, 95, 102, 104, 109, 119, 125, 136, 137, 144, 152, 159, 162, 174, 183, 191, 195, 208, 215, 229, 235, 240, 250, 265, 268, 272, 276, 285, 292, 308, 311, 319, 324, 334, 345, 362, 368, 386, 398, 404, 405, 414
Offset: 1

Views

Author

Ilya Gutkovskiy, May 05 2018

Keywords

Comments

Partial sums of A066328.

Crossrefs

Programs

  • Maple
    seq(add(k*floor(n/ithprime(k)),k=1..n),n=1..65); # Paolo P. Lava, May 14 2018
  • Mathematica
    Table[Sum[k Floor[n/Prime[k]], {k, n}], {n, 65}]
    nmax = 65; Rest[CoefficientList[Series[1/(1 - x) Sum[k x^Prime[k]/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x]]
    a[n_] := Plus @@ (PrimePi[#[[1]]] & /@ FactorInteger[n]); a[1] = 0; Accumulate[Table[a[n], {n, 65}]]

Formula

G.f.: (1/(1 - x))*Sum_{k>=1} k*x^prime(k)/(1 - x^prime(k)).
a(p^k) = a(p^k-1) + pi(p), where p is a prime and pi() = A000720.
a(n) = A056239(A048803(n)).