cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A304092 Number of Lucas numbers (A000032: 2, 1, 3, 4, 7, 11, ...) dividing n.

Original entry on oeis.org

1, 2, 2, 3, 1, 3, 2, 3, 2, 2, 2, 4, 1, 3, 2, 3, 1, 4, 1, 3, 3, 3, 1, 4, 1, 2, 2, 4, 2, 3, 1, 3, 3, 2, 2, 5, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 2, 4, 2, 2, 2, 3, 1, 4, 2, 4, 2, 3, 1, 4, 1, 2, 3, 3, 1, 4, 1, 3, 2, 3, 1, 5, 1, 2, 2, 4, 3, 3, 1, 3, 2, 2, 1, 5, 1, 2, 3, 4, 1, 4, 2, 3, 2, 3, 1, 4, 1, 3, 3, 3, 1, 3, 1, 3, 3
Offset: 1

Views

Author

Antti Karttunen, May 13 2018

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A102460(d).
a(n) = A304091(n) + A102460(n).
a(n) = A304094(n) + A059841(n) = A304096(n) + A059841(n) + A079978(n) + 1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A093540 + 1/2 = 2.462858... . - Amiram Eldar, Dec 31 2023

A304095 a(n) is the number of the proper divisors of n that are Lucas numbers larger than 3 (4, 7, 11, 18, ...).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 2, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 1, 0, 2, 0, 0, 0, 2, 0, 0, 1, 1
Offset: 1

Views

Author

Antti Karttunen, May 13 2018

Keywords

Comments

a(n) is the number of the proper divisors d of n that are of the form d = A000045(k-1) + A000045(k+1), for k >= 3.

Examples

			The proper divisors of 28 are 1, 2, 4, 7 and 14. Of these 4 and 7 are Lucas numbers (A000032) larger than 3, thus a(28) = 2.
		

Crossrefs

Programs

  • PARI
    A102460(n) = { my(u1=1,u2=3,old_u1); if(n<=2,sign(n),while(n>u2,old_u1=u1;u1=u2;u2=old_u1+u2);(u2==n)); };
    A304095(n) = sumdiv(n,d,(d>3)*(dA102460(d));

Formula

a(n) = Sum_{d|n, d>3, dA102460(d).
a(n) = A007949(A304102(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A093540 - 4/3 = 0.629524... . - Amiram Eldar, Jul 05 2025

A304093 a(n) is the number of the proper divisors of n that are Lucas numbers (A000204, with 2 excluded).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 3, 2, 1, 3, 1, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 4, 1, 1, 2, 2, 1, 3, 1, 3, 2, 1, 1, 3, 2, 1, 2, 2, 1, 3, 2, 3, 2, 2, 1, 3, 1, 1, 3, 2, 1, 3, 1, 2, 2, 2, 1, 4, 1, 1, 2, 2, 3, 2, 1, 2, 2, 1, 1, 4, 1, 1, 3, 3, 1, 3, 2, 2, 2, 2, 1, 3, 1, 2, 3, 2, 1, 2, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, May 13 2018

Keywords

Crossrefs

Programs

  • PARI
    isA000204(n) = { my(u1=1,u2=3,old_u1); if(n<=2,(n%2),while(n>u2,old_u1=u1;u1=u2;u2=old_u1+u2);(u2==n)); };
    A304093(n) = sumdiv(n,d,(dA000204(d));

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A093540. - Amiram Eldar, Jul 05 2025
Showing 1-3 of 3 results.