cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A304103 Restricted growth sequence transform of A304102, a filter sequence related to the proper divisors of n expressed in Fibonacci number system.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 5, 4, 7, 2, 8, 2, 6, 5, 5, 2, 9, 3, 4, 10, 11, 2, 12, 2, 6, 5, 13, 5, 14, 2, 13, 4, 9, 2, 15, 2, 11, 8, 10, 2, 16, 17, 18, 13, 6, 2, 19, 5, 20, 13, 5, 2, 21, 2, 13, 6, 22, 4, 23, 2, 24, 10, 25, 2, 26, 2, 10, 18, 27, 28, 12, 2, 29, 30, 13, 2, 31, 13, 32, 5, 33, 2, 34, 5, 35, 13, 5, 13, 21, 2, 36, 37, 38, 2, 39, 2, 9, 15
Offset: 1

Views

Author

Antti Karttunen, May 13 2018

Keywords

Comments

For all i, j: a(i) = a(j) => b(i) = b(j), where b can be any of {A000005, A293435, A304095 or A300836} for example.

Crossrefs

Cf. also A300835, A304105, A305800.
Cf. A305793 (analogous filter for base 2).

Programs

  • PARI
    \\ Needs also code from A304101.
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A304102(n) = { my(m=1); fordiv(n,d,if(dA304101(d)-1))); (m); };
    write_to_bfile(1,rgs_transform(vector(up_to,n,A304102(n))),"b304103.txt");

A304101 Restricted growth sequence transform of A278222(A048679(n)).

Original entry on oeis.org

1, 2, 2, 2, 3, 2, 4, 3, 2, 4, 4, 3, 5, 2, 4, 4, 4, 6, 3, 6, 5, 2, 4, 4, 4, 6, 4, 7, 6, 3, 6, 6, 5, 8, 2, 4, 4, 4, 6, 4, 7, 6, 4, 7, 7, 6, 9, 3, 6, 6, 6, 10, 5, 9, 8, 2, 4, 4, 4, 6, 4, 7, 6, 4, 7, 7, 6, 9, 4, 7, 7, 7, 11, 6, 11, 9, 3, 6, 6, 6, 10, 6, 11, 10, 5, 9, 9, 8, 12, 2, 4, 4, 4, 6, 4, 7, 6, 4, 7, 7, 6, 9, 4, 7, 7, 7
Offset: 0

Views

Author

Antti Karttunen, May 13 2018

Keywords

Comments

Positions of 2's is given by the positive Fibonacci numbers: 1, 2, 3, 5, 8, 13, 21, ..., that is, A000045(n) from n >= 2 onward.
Positions of 3's is given by Lucas numbers larger than 3: 4, 7, 11, 18, ..., that is, A000032(n) from n >= 3 onward.
Sequence allots a distinct value for each distinct multiset formed from the lengths of 1-runs in the binary representation of A048679(n). Compare to the scatter plot of A286622.

Crossrefs

Cf. also A286622 (compare the scatter-plots).

Programs

  • PARI
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
    A003714(n) = { my(s=0,w); while(n>2, w = A072649(n); s += 2^(w-1); n -= fibonacci(w+1)); (s+n); }
    A106151(n) = if(n<=1, n, if(n%2, 1+(2*A106151((n-1)/2)), A106151(n>>valuation(n, 2))<<(valuation(n, 2)-1)));
    A048679(n) = if(!n,n,A106151(2*A003714(n)));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    v304101 = rgs_transform(vector(1+up_to, n, A278222(A048679(n-1))));
    A304101(n) = v304101[1+n];

A304104 a(n) = Product_{d|n, d>1} prime(A304101(d)-1).

Original entry on oeis.org

1, 2, 2, 6, 2, 20, 3, 12, 10, 20, 3, 420, 2, 30, 20, 60, 11, 300, 11, 420, 12, 30, 5, 4200, 22, 20, 130, 990, 3, 11000, 11, 420, 102, 44, 30, 31500, 5, 242, 20, 10920, 11, 3000, 13, 1170, 1100, 190, 3, 231000, 33, 2420, 506, 420, 19, 66300, 12, 9900, 110, 30, 11, 8085000, 13, 242, 300, 5460, 52, 56100, 19, 660, 130, 19500, 13, 9135000, 11, 290, 4180, 2178, 99
Offset: 1

Views

Author

Antti Karttunen, May 13 2018

Keywords

Crossrefs

Cf. A304101, A304102, A304105 (restricted growth sequence transform of this sequence).

Programs

  • PARI
    \\ Needs also code from A304101:
    A304104(n) = { my(m=1); fordiv(n,d,if(d>1, m *= prime(A304101(d)-1))); (m); };

Formula

a(n) = Product_{d|n, d>1} A000040(A304101(d)-1).
a(n) = (1/2) * A304102(n) * A000040(A304101(n)-1).
Other identities. For all n >= 1:
A001222(a(n)) = A032741(n).
A001511(a(n)) = A005086(n).
A007949(a(n)) = A304096(n).

A304095 a(n) is the number of the proper divisors of n that are Lucas numbers larger than 3 (4, 7, 11, 18, ...).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 2, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 1, 0, 2, 0, 0, 0, 2, 0, 0, 1, 1
Offset: 1

Views

Author

Antti Karttunen, May 13 2018

Keywords

Comments

a(n) is the number of the proper divisors d of n that are of the form d = A000045(k-1) + A000045(k+1), for k >= 3.

Examples

			The proper divisors of 28 are 1, 2, 4, 7 and 14. Of these 4 and 7 are Lucas numbers (A000032) larger than 3, thus a(28) = 2.
		

Crossrefs

Programs

  • PARI
    A102460(n) = { my(u1=1,u2=3,old_u1); if(n<=2,sign(n),while(n>u2,old_u1=u1;u1=u2;u2=old_u1+u2);(u2==n)); };
    A304095(n) = sumdiv(n,d,(d>3)*(dA102460(d));

Formula

a(n) = Sum_{d|n, d>3, dA102460(d).
a(n) = A007949(A304102(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A093540 - 4/3 = 0.629524... . - Amiram Eldar, Jul 05 2025

A305792 a(n) = Product_{d|n, dA286622(d)-1).

Original entry on oeis.org

1, 2, 2, 4, 2, 12, 2, 8, 6, 20, 2, 72, 2, 28, 30, 16, 2, 180, 2, 200, 42, 44, 2, 432, 10, 44, 30, 392, 2, 11700, 2, 32, 66, 20, 70, 5400, 2, 44, 66, 2000, 2, 29988, 2, 968, 1950, 76, 2, 2592, 14, 1100, 30, 968, 2, 20700, 110, 5488, 66, 76, 2, 4563000, 2, 116, 3570, 64, 110, 21780, 2, 200, 114, 53900, 2, 162000, 2, 68, 4290, 968, 154, 82764, 2, 20000
Offset: 1

Views

Author

Antti Karttunen, Jun 11 2018

Keywords

Crossrefs

Cf. A008578, A278222, A286622, A305793 (rgs-transform), A305794.
Cf. also A293214, A304102.

Programs

  • PARI
    A305792(n) = { my(m=1); fordiv(n,d,if(dA286622(d)-1))); (m); }; \\ Needs also code from A286622.

Formula

a(n) = Product_{d|n, dA008578(A286622(d)).
For all k >= 0, a(2^k) = 2^k.

A305812 a(1) = 0; for n > 1, a(n) = Product_{d|n, 1 < d < n} prime(A305788(d)-1).

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 1, 6, 2, 6, 1, 60, 1, 4, 6, 42, 1, 100, 1, 198, 4, 4, 1, 4620, 3, 4, 10, 60, 1, 4620, 1, 546, 4, 26, 6, 56100, 1, 4, 4, 26334, 1, 600, 1, 60, 210, 10, 1, 1381380, 2, 132, 26, 60, 1, 18700, 6, 4620, 4, 10, 1, 66625020, 1, 4, 60, 15834, 6, 1000, 1, 2418, 10, 3300, 1, 334187700, 1, 4, 84, 60, 4, 2200, 1, 14036022, 110, 4, 1
Offset: 1

Views

Author

Antti Karttunen, Jun 11 2018

Keywords

Crossrefs

Cf. A008578, A278233, A305788, A305813 (rgs-transform), A305814.
Cf. also A305792, A304102.

Programs

  • PARI
    A305812(n) = if(1==n,0, my(m=1); fordiv(n,d,if((d>1)&&(dA305788(d)-1))); (m)); \\ Needs also code from A305788.

Formula

a(1) = 0; for n > 1, a(n) = Product_{d|n, dA008578(A305788(d)).
Showing 1-6 of 6 results.