cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A304159 a(n) = 2*n^3 - 4*n^2 + 6*n - 2 (n>=1).

Original entry on oeis.org

2, 10, 34, 86, 178, 322, 530, 814, 1186, 1658, 2242, 2950, 3794, 4786, 5938, 7262, 8770, 10474, 12386, 14518, 16882, 19490, 22354, 25486, 28898, 32602, 36610, 40934, 45586, 50578, 55922, 61630, 67714, 74186, 81058, 88342, 96050, 104194, 112786, 121838, 131362, 141370, 151874, 162886, 174418, 186482, 199090
Offset: 1

Views

Author

Emeric Deutsch, May 09 2018

Keywords

Comments

a(n) is the first Zagreb index of the Barbell graph B(n) (n>=3).
The Barbell graph B(n) is defined as two copies of the complete graph K(n) (n>=3), connected by a bridge.
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
The M-polynomial of the Barbell graph B(n) is M(B(n),x,y) = (n-1)*(n-2)*x^{n-1}*y^{n-1} + 2*(n-1)*x^{n-1}*y^n + x^n*y^n.

Crossrefs

Programs

  • Maple
    seq(2*n^3-4*n^2+6*n-2, n = 1 .. 40);
  • Mathematica
    Table[2n^3-4n^2+6n-2 ,{n,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{2,10,34,86},50] (* Harvey P. Dale, Mar 05 2023 *)
  • PARI
    Vec(2*x*(1 + x + 3*x^2 + x^3) / (1 - x)^4 + O(x^60)) \\ Colin Barker, May 09 2018
    
  • PARI
    a(n) = 2*n^3-4*n^2+6*n-2; \\ Altug Alkan, May 09 2018

Formula

a(n) = 2 * A100705(n-1).
From Colin Barker, May 09 2018: (Start)
G.f.: 2*x*(1 + x + 3*x^2 + x^3) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4. (End)
a(n) = A033431(n) - A002943(n-1) = A033431(n) - 2*A014105(n-1). - Omar E. Pol, May 09 2018
Showing 1-1 of 1 results.