A304161 a(n) = 2*n^3 - 4*n^2 + 10*n - 2 (n>=1).
6, 18, 46, 102, 198, 346, 558, 846, 1222, 1698, 2286, 2998, 3846, 4842, 5998, 7326, 8838, 10546, 12462, 14598, 16966, 19578, 22446, 25582, 28998, 32706, 36718, 41046, 45702, 50698, 56046, 61758, 67846, 74322, 81198, 88486, 96198, 104346, 112942, 121998
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
- D. Stevanovic, I. Stankovic, and M. Milosevic, More on the relation between energy and Laplacian energy of graphs, MATCH Commun. Math. Comput. Chem. 61, 2009, 395-401.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Mathematica
Table[2n^3-4n^2+10n-2 ,{n,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{6,18,46,102},50] (* Harvey P. Dale, Oct 17 2022 *) -
PARI
Vec(2*x*(3 - 3*x + 5*x^2 + x^3) / (1 - x)^4 + O(x^60)) \\ Colin Barker, May 09 2018
Formula
From Colin Barker, May 09 2018: (Start)
G.f.: 2*x*(3 - 3*x + 5*x^2 + x^3) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
(End)
Comments