cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A304166 a(n) = 972*n^2 - 1224*n + 414 with n > 0.

Original entry on oeis.org

162, 1854, 5490, 11070, 18594, 28062, 39474, 52830, 68130, 85374, 104562, 125694, 148770, 173790, 200754, 229662, 260514, 293310, 328050, 364734, 403362, 443934, 486450, 530910, 577314, 625662, 675954, 728190, 782370, 838494, 896562, 956574, 1018530, 1082430, 1148274, 1216062, 1285794, 1357470, 1431090, 1506654
Offset: 1

Views

Author

Emeric Deutsch, May 09 2018

Keywords

Comments

a(n) provides the second Zagreb index of the HcDN1(n) network (see Fig. 3 in the Hayat et al. paper).
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of HcDN1(n) is M(HcDN1(n); x,y) = 6x^3*y^3 + 12(n-1)x^3*y^5 + 6nx^3*y^6 + 18(n-1)x^5*y^6 + (27n^2 - 57n + 30)x^6*y^6. - Emeric Deutsch, May 11 2018

Crossrefs

Programs

  • Maple
    seq(972*n^2-1224*n+414, n = 1 .. 40);
  • PARI
    a(n) = 972*n^2-1224*n+414; \\ Altug Alkan, May 09 2018
    
  • PARI
    Vec(18*x*(9 + 76*x + 23*x^2) / (1 - x)^3 + O(x^60)) \\ Colin Barker, May 10 2018

Formula

From Colin Barker, May 10 2018: (Start)
G.f.: 18*x*(9 + 76*x + 23*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
E.g.f.: 18*(exp(x)*(23 - 14*x + 54*x^2) - 23). - Stefano Spezia, Apr 15 2023
Showing 1-1 of 1 results.