cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A304169 a(n) = 16*3^n + 2^(n+1) - 26 (n>=1).

Original entry on oeis.org

26, 126, 422, 1302, 3926, 11766, 35222, 105462, 315926, 946806, 2838422, 8511222, 25525526, 76560246, 229648022, 688878582, 2066504726, 6199252086, 18597232022, 55790647542, 167369845526, 502105342326, 1506307638422, 4518906138102, 13556684859926, 40669987470966
Offset: 1

Views

Author

Emeric Deutsch, May 11 2018

Keywords

Comments

For n>=2, a(n) is the first Zagreb index of the Sierpinski Gasket Rhombus graph SR[n] (see the Antony Xavier et al. reference).
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
The M-polynomial of the Sierpinski Gasket Rhombus graph SR[n] is M(SR[n]; x,y) = 4*x^2*y^4 + 4*x^3*y^4 +2*x^3*y^6 + (2*3^n - 3*2^n - 4)*x^4*y^4 + (2^{n+1} - 4)*x^4*y^6 + (2^{n-1} - 2)*x^6*y^6.

Crossrefs

Cf. A304170.

Programs

  • Maple
    seq(16*3^n+2^(n+1)-26, n = 1 .. 30);
  • PARI
    Vec(2*x*(13 - 15*x - 24*x^2) / ((1 - x)*(1 - 2*x)*(1 - 3*x)) + O(x^30)) \\ Colin Barker, May 11 2018

Formula

From Colin Barker, May 11 2018: (Start)
G.f.: 2*x*(13 - 15*x - 24*x^2) / ((1 - x)*(1 - 2*x)*(1 - 3*x)).
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>3.
(End)

A304167 a(n) = 3^n - 2^(n-1) + 2 (n>=1).

Original entry on oeis.org

4, 9, 25, 75, 229, 699, 2125, 6435, 19429, 58539, 176125, 529395, 1590229, 4774779, 14332525, 43013955, 129074629, 387289419, 1161999325, 3486260115, 10459304629, 31378962459, 94138984525, 282421147875, 847271832229, 2541832273899, 7625530376125, 22876658237235, 68630108929429, 205890595223739
Offset: 1

Views

Author

Emeric Deutsch, May 10 2018

Keywords

Comments

For n>=2, a(n) is the number of vertices of the Sierpinski Gasket Rhombus graph SR(n) (see Theorem 2.1 in the D. Antony Xavier et al. reference).

Crossrefs

Programs

  • GAP
    List([1..40],n->3^n-2^(n-1)+2); # Muniru A Asiru, May 10 2018
  • Maple
    seq(3^n-2^(n-1)+2, n = 1 .. 40);
  • PARI
    Vec(x*(4 - 15*x + 15*x^2) / ((1 - x)*(1 - 2*x)*(1 - 3*x)) + O(x^30)) \\ Colin Barker, May 10 2018
    

Formula

From Colin Barker, May 10 2018: (Start)
G.f.: x*(4 - 15*x + 15*x^2) / ((1 - x)*(1 - 2*x)*(1 - 3*x)).
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>3.
(End)
a(n) = A083313(n)+2. - R. J. Mathar, Jul 24 2022

A304168 a(n) = 2*3^n - 2^(n-1) (n>=1).

Original entry on oeis.org

5, 16, 50, 154, 470, 1426, 4310, 12994, 39110, 117586, 353270, 1060834, 3184550, 9557746, 28681430, 86060674, 258214790, 774709906, 2324260790, 6973044514, 20919657830, 62760022066, 188282163350, 564850684354, 1694560441670, 5083698102226, 15251127861110, 45753450692194, 137260486294310, 411781727318386
Offset: 1

Views

Author

Emeric Deutsch, May 10 2018

Keywords

Comments

For n>=2, a(n) is the number of edges of the Sierpinski Gasket Rhombus graph SR(n) (see Theorem 2.1 in the D. Antony Xavier et al. reference).

Crossrefs

Programs

  • GAP
    List([1..35],n->2*3^n-2^(n-1)); # Muniru A Asiru, May 10 2018
  • Maple
    seq(2*3^n-2^(n-1), n = 1 .. 40);
  • PARI
    Vec(x*(5 - 9*x) / ((1 - 2*x)*(1 - 3*x)) + O(x^30)) \\ Colin Barker, May 10 2018
    

Formula

From Colin Barker, May 10 2018: (Start)
G.f.: x*(5 - 9*x) / ((1 - 2*x)*(1 - 3*x)).
a(n) = 5*a(n-1) - 6*a(n-2) for n>2.
(End)
Showing 1-3 of 3 results.