A304192 G.f. A(x) satisfies: [x^n] (1+x)^(n*(n+1)) / A(x) = 0 for n>0.
1, 2, 7, 72, 1224, 29184, 892074, 33144288, 1445847756, 72291575784, 4070550314292, 254674699992768, 17518238545282080, 1313558965998605568, 106608039857256267192, 9309469431887521270848, 870250987085629018699728, 86703492688056304091302944, 9171254392641669833788501488, 1026466161170552167031522911104
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 2*x + 7*x^2 + 72*x^3 + 1224*x^4 + 29184*x^5 + 892074*x^6 + 33144288*x^7 + 1445847756*x^8 + 72291575784*x^9 + ... ILLUSTRATION OF DEFINITION. The table of coefficients of x^k in (1+x)^(n*(n+1)) / A(x) begins: n=0: [1, -2, -3, -52, -955, -24246, -771113, -29428232, ...]; n=1: [1, 0, -6, -60, -1062, -26208, -820560, -30994704, ...]; n=2: [1, 4, 0, -80, -1337, -30840, -932010, -34438500, ...]; n=3: [1, 10, 39, 0, -1722, -39996, -1138680, -40521096, ...]; n=4: [1, 18, 147, 648, 0, -50832, -1503546, -50844384, ...]; n=5: [1, 28, 372, 3048, 15465, 0, -1898490, -67990260, ...]; n=6: [1, 40, 774, 9580, 83248, 483240, 0, -85539792, ...]; n=7: [1, 54, 1425, 24420, 303363, 2844270, 18685905, 0, ...]; ... in which the main diagonal is all zeros after the initial term, illustrating that [x^n] (1+x)^(n*(n+1)) / A(x) = 0 for n>0. RELATED SEQUENCES. The secondary diagonal in the above table that begins [1, 4, 39, 648, 15465, 483240, 18685905, 861282832, 46085893011, ...] yields A132612, column 1 of triangle A132610. Related triangular matrix T = A132610 begins: 1; 1, 1; 2, 1, 1; 14, 4, 1, 1; 194, 39, 6, 1, 1; 4114, 648, 76, 8, 1, 1; 118042, 15465, 1510, 125, 10, 1, 1; 4274612, 483240, 41121, 2908, 186, 12, 1, 1; 186932958, 18685905, 1424178, 89670, 4970, 259, 14, 1, 1; ... in which row n+1 of T = row n of matrix power T^(2*n) with appended '1' for n>=0.
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..300
Programs
-
PARI
{a(n) = my(A=[1]); for(i=1,n, A=concat(A,0); m=#A; A[m] = Vec( (1+x +x*O(x^m))^(m*(m-1))/Ser(A) )[m] ); A[n+1]} for(n=0,30, print1(a(n),", "))
Formula
A132612(n+1) = [x^n] (1+x)^((n+1)*(n+2)) / A(x) for n>0.
Comments