A304255 Triangle read by rows: T(0,0) = 1; T(n,k) = 6*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.
1, 6, 36, 1, 216, 12, 1296, 108, 1, 7776, 864, 18, 46656, 6480, 216, 1, 279936, 46656, 2160, 24, 1679616, 326592, 19440, 360, 1, 10077696, 2239488, 163296, 4320, 30, 60466176, 15116544, 1306368, 45360, 540, 1, 362797056, 100776960, 10077696, 435456, 7560, 36
Offset: 0
Examples
Triangle begins: 1; 6; 36, 1; 216, 12; 1296, 108, 1; 7776, 864, 18; 46656, 6480, 216, 1; 279936, 46656, 2160, 24; 1679616, 326592, 19440, 360, 1; 10077696, 2239488, 163296, 4320, 30; 60466176, 15116544, 1306368, 45360, 540, 1; 362797056, 100776960, 10077696, 435456, 7560, 36; 2176782336, 665127936, 75582720, 3919104, 90720, 756, 1; 13060694016, 4353564672, 554273280, 33592320, 979776, 12096, 42; 78364164096, 28298170368, 3990767616, 277136640, 9797760, 163296, 1008, 1; 470184984576, 182849716224, 28298170368, 2217093120, 92378880, 1959552, 18144, 48;
References
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 94.
Links
- Zagros Lalo, Left-justified triangle
- Zagros Lalo, Skew diagonals in center-justified triangle of coefficients in expansion of (1+6x)^n
Crossrefs
Programs
-
Mathematica
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 6 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 11}, {k, 0, Floor[n/2]}] // Flatten
-
PARI
T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, 6*T(n-1, k) + T(n-2, k-1))); tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 26 2018
Comments