A304273 The concatenation of the first n terms is the smallest positive even number with n digits when written in base 3/2 (cf. A024629).
2, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0
Offset: 1
Examples
The number 5 in base 3/2 is 22, and the number 6 is 210. Therefore 210 is the smallest even integer with 3 digits in base 3/2. Its prefix 21 is 4: the smallest even integer with 2 digits in base 3/2.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- B. Chen, R. Chen, J. Guo, S. Lee et al., On Base 3/2 and its Sequences, arXiv:1808.04304 [math.NT], 2018.
Crossrefs
Programs
-
Maple
b:= proc(n) option remember; `if`(n<2, 2*n, (t-> t+irem(t, 2))(b(n-1)*3/2)) end: a:= n-> b(n)-3/2*b(n-1): seq(a(n), n=1..105); # Alois P. Heinz, Jun 21 2018
-
Mathematica
b[n_] := b[n] = If[n < 2, 2*n, Function[t, t + Mod[t, 2]][3/2 b[n - 1]]]; a[n_] := b[n] - 3/2 b[n - 1]; Table[a[n], {n, 1, 105}] (* Robert P. P. McKone, Feb 12 2021 *)
Formula
For n>1, a(n) = A304274(n-1) - 1.
Extensions
More terms from Alois P. Heinz, Jun 21 2018
Comments