A304311 Triangle T(n,k) read by rows: number of bicolored connected graphs with n nodes and k nodes of the first color.
1, 1, 1, 1, 1, 1, 2, 3, 3, 2, 6, 11, 16, 11, 6, 21, 58, 98, 98, 58, 21, 112, 407, 879, 1087, 879, 407, 112, 853, 4306, 11260, 17578, 17578, 11260, 4306, 853, 11117, 72489, 230505, 436371, 537272, 436371, 230505, 72489, 11117
Offset: 0
Examples
Triangle begins 1; 1, 1; 1, 1, 1; 2, 3, 3, 2; 6, 11, 16, 11, 6; 21, 58, 98, 98, 58, 21; 112, 407, 879, 1087, 879, 407, 112; 853, 4306, 11260, 17578, 17578, 11260, 4306, 853; 11117, 72489, 230505, 436371, 537272, 436371, 230505, 72489, 11117;
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1274
Crossrefs
Programs
-
PARI
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)} S(n,y)={my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)*prod(i=1,#p,1+y^p[i])); s/n!} InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i) )} {my(A=InvEulerMT(vector(10, n, S(n,y)))); for(n=0, #A, for(k=0, n, print1(polcoeff(if(n,A[n],1), k), ", ")); print)} \\ Andrew Howroyd, May 13 2018
Formula
T(n,k) = T(n,n-k).