cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304321 Table of coefficients in row functions F'(n,x)/F(n,x) such that [x^k] exp( k^n * x ) / F(n,x) = 0 for k>=1 and n>=1.

Original entry on oeis.org

1, 1, 1, 1, 9, 1, 1, 49, 148, 1, 1, 225, 6877, 3493, 1, 1, 961, 229000, 1854545, 106431, 1, 1, 3969, 6737401, 612243125, 807478656, 3950832, 1, 1, 16129, 188580028, 172342090401, 3367384031526, 514798204147, 172325014, 1, 1, 65025, 5170118437, 45770504571813, 11657788116175751, 33056423981177346, 451182323794896, 8617033285, 1
Offset: 1

Views

Author

Paul D. Hanna, May 11 2018

Keywords

Comments

Conjecture: T(n,k) in row n and column k gives the number of connected k-state finite automata with n inputs, for k>=0, for n>=1. For example, row 2 agrees with A006691, the number of connected n-state finite automata with 2 inputs; also, row 3 agrees with A006692, the number of connected n-state finite automata with 3 inputs.

Examples

			This table begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...;
1, 9, 148, 3493, 106431, 3950832, 172325014, 8617033285, 485267003023, ...;
1, 49, 6877, 1854545, 807478656, 514798204147, 451182323794896, ...;
1, 225, 229000, 612243125, 3367384031526, 33056423981177346, ...;
1, 961, 6737401, 172342090401, 11657788116175751, 1722786509653595220757, ...;
1, 3969, 188580028, 45770504571813, 37854124915368647781, ...;
1, 16129, 5170118437, 11889402239702065, 120067639589726126102806, ...;
1, 65025, 140510362000, 3061712634885743125, 377436820462509018320487276, ...;
1, 261121, 3804508566001, 785701359968473902401, 1182303741240112494973150131501, ...; ...
Let F'(n,x)/F(n,x) denote the o.g.f. of row n of this table, then the coefficient of x^k in exp(k^n*x)/F(n,x) = 0 for k>=1 and n>=1.
		

Crossrefs

Cf. A304320, A304312 (row 2), A304313 (row 3), A304314 (row 4), A304315 (row 5).

Programs

  • Mathematica
    m = 10(*rows*);
    row[nn_] := Module[{F, s}, F = 1 + Sum[c[k] x^k, {k, m}]; s[n_] := Solve[ SeriesCoefficient[Exp[n^nn*x]/F, {x, 0, n}] == 0][[1]]; Do[F = F /. s[n], {n, m}]; CoefficientList[D[F, x]/F + O[x]^m, x]];
    T = Array[row, m];
    Table[T[[n-k+1, k]], {n, 1, m}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 27 2019 *)
  • PARI
    {T(n,k) = my(A=[1],m); for(i=0, k, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*(m-1)^n +x^2*O(x^m)) / Ser(A) )[m] ); L = Vec(Ser(A)'/Ser(A)); L[k+1]}
    /* Print table: */
    for(n=1,8, for(k=0,8, print1( T(n,k),", "));print(""))
    /* Print as a flattened table: */
    for(n=0,10, for(k=0,n, print1( T(n-k+1,k),", "));)

Formula

Row n of this table equals the logarithmic derivative of row n of table A304320.
For fixed row r > 1 is a(n) ~ sqrt(1-c) * r^(r*(n+1)) * n^((r-1)*n + r - 1/2) / (sqrt(2*Pi) * c^(n+1) * (r-c)^((r-1)*(n+1)) * exp((r-1)*n)), where c = -LambertW(-r*exp(-r)). - Vaclav Kotesovec, Aug 31 2020