A304321 Table of coefficients in row functions F'(n,x)/F(n,x) such that [x^k] exp( k^n * x ) / F(n,x) = 0 for k>=1 and n>=1.
1, 1, 1, 1, 9, 1, 1, 49, 148, 1, 1, 225, 6877, 3493, 1, 1, 961, 229000, 1854545, 106431, 1, 1, 3969, 6737401, 612243125, 807478656, 3950832, 1, 1, 16129, 188580028, 172342090401, 3367384031526, 514798204147, 172325014, 1, 1, 65025, 5170118437, 45770504571813, 11657788116175751, 33056423981177346, 451182323794896, 8617033285, 1
Offset: 1
Examples
This table begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...; 1, 9, 148, 3493, 106431, 3950832, 172325014, 8617033285, 485267003023, ...; 1, 49, 6877, 1854545, 807478656, 514798204147, 451182323794896, ...; 1, 225, 229000, 612243125, 3367384031526, 33056423981177346, ...; 1, 961, 6737401, 172342090401, 11657788116175751, 1722786509653595220757, ...; 1, 3969, 188580028, 45770504571813, 37854124915368647781, ...; 1, 16129, 5170118437, 11889402239702065, 120067639589726126102806, ...; 1, 65025, 140510362000, 3061712634885743125, 377436820462509018320487276, ...; 1, 261121, 3804508566001, 785701359968473902401, 1182303741240112494973150131501, ...; ... Let F'(n,x)/F(n,x) denote the o.g.f. of row n of this table, then the coefficient of x^k in exp(k^n*x)/F(n,x) = 0 for k>=1 and n>=1.
Links
Programs
-
Mathematica
m = 10(*rows*); row[nn_] := Module[{F, s}, F = 1 + Sum[c[k] x^k, {k, m}]; s[n_] := Solve[ SeriesCoefficient[Exp[n^nn*x]/F, {x, 0, n}] == 0][[1]]; Do[F = F /. s[n], {n, m}]; CoefficientList[D[F, x]/F + O[x]^m, x]]; T = Array[row, m]; Table[T[[n-k+1, k]], {n, 1, m}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 27 2019 *)
-
PARI
{T(n,k) = my(A=[1],m); for(i=0, k, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*(m-1)^n +x^2*O(x^m)) / Ser(A) )[m] ); L = Vec(Ser(A)'/Ser(A)); L[k+1]} /* Print table: */ for(n=1,8, for(k=0,8, print1( T(n,k),", "));print("")) /* Print as a flattened table: */ for(n=0,10, for(k=0,n, print1( T(n-k+1,k),", "));)
Formula
Row n of this table equals the logarithmic derivative of row n of table A304320.
For fixed row r > 1 is a(n) ~ sqrt(1-c) * r^(r*(n+1)) * n^((r-1)*n + r - 1/2) / (sqrt(2*Pi) * c^(n+1) * (r-c)^((r-1)*(n+1)) * exp((r-1)*n)), where c = -LambertW(-r*exp(-r)). - Vaclav Kotesovec, Aug 31 2020
Comments