A304338 Row sums of A304336.
1, 1, 4, 26, 239, 2902, 44441, 830636, 18495910, 481474188, 14432543299, 492063896964, 18885525411110, 808850019798316, 38368738864146619, 2002743853356179552, 114374154959904537521, 7110312727864509410026, 479017371580348640009295
Offset: 0
Keywords
Programs
-
Maple
A304338 := n -> add(add((-1)^j*binomial(2*k,j)*(k-j)^(2*n), j=0..k)/(k!)^2, k=0..n): seq(A304338(n), n=0..18);
-
PARI
a(n) = sum(k=0, n, sum(j=0, k, (-1)^j*binomial(2*k,j)*(k-j)^(2*n)) / (k!)^2); \\ Michel Marcus, May 11 2018
Formula
a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^j*binomial(2*k,j)*(k-j)^(2*n) / (k!)^2.