A304359 Antidiagonal sums of the second quadrant of array A(k,m) = F_k(m), F_k(m) being the k-th Fibonacci polynomial evaluated at m.
0, 1, 1, 1, 1, 1, 0, 2, 1, -10, 39, -58, -166, 1611, -6311, 10083, 54195, -565257, 2727568, -6102368, -26464605, 394614352, -2515452801, 8797315672, 11441288836, -458369484247, 4097437715969, -21769011878335, 36715605929957, 703213495381553, -10042075731879152
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..616
- Wikipedia, Fibonacci polynomials
- Wikipedia, Quadrant (plane geometry)
Programs
-
Maple
F:= (n, k)-> (<<0|1>, <1|k>>^n)[1, 2]: a:= n-> add(F(-j, n-j), j=0..n): seq(a(n), n=0..30); # second Maple program: F:= proc(n, k) option remember; `if`(n<2, n, k*F(n-1, k)+F(n-2, k)) end: a:= n-> add(F(j, j-n), j=0..n): seq(a(n), n=0..30); # third Maple program: a:= n-> add(combinat[fibonacci](j, j-n), j=0..n): seq(a(n), n=0..30);
-
Mathematica
a[n_] := Sum[Fibonacci[j, j - n], {j, 0, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 02 2018, from 3rd Maple program *)
Formula
a(n) = Sum_{j=0..n} F_j(j-n).
Comments