A304389 a(n) = 126*2^n - 22 (n>=1).
230, 482, 986, 1994, 4010, 8042, 16106, 32234, 64490, 129002, 258026, 516074, 1032170, 2064362, 4128746, 8257514, 16515050, 33030122, 66060266, 132120554, 264241130, 528482282, 1056964586, 2113929194, 4227858410, 8455716842, 16911433706, 33822867434, 67645734890, 135291469802, 270582939626, 541165879274
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- M. B. Ahmadi and M. Sadeghimehr, Atom bond connectivity index of an infinite class NS1[n] of dendrimer nanostars, Optoelectronics and Advanced Materials, 4(7):1040-1042 July 2010.
- Ali Reza Ashrafi and Parisa Nikzad, Kekulé index and bounds of energy for nanostar dendrimers, Digest J. of Nanomaterials and Biostructures, 4, No. 2, 2009, 383-388.
- E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Programs
-
GAP
List([1..40],n->126*2^n-22); # Muniru A Asiru, May 13 2018
-
Maple
seq(126*2^n-22, n = 1 .. 40);
-
PARI
a(n) = 126*2^n - 22; \\ Altug Alkan, May 13 2018
-
PARI
Vec(2*x*(115 - 104*x) / ((1 - x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, May 18 2018
Formula
From Colin Barker, May 18 2018: (Start)
G.f.: 2*x*(115 - 104*x) / ((1 - x)*(1 - 2*x)).
a(n) = 3*a(n-1) - 2*a(n-2) for n>2.
(End)
Comments