cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304392 Numbers without a digit 1 with digits in nondecreasing order and the product of digits is a power of 6.

Original entry on oeis.org

6, 23, 49, 66, 229, 236, 334, 389, 469, 666, 2233, 2269, 2349, 2366, 2899, 3338, 3346, 3689, 4499, 4669, 6666, 22239, 22336, 22499, 22669, 23334, 23389, 23469, 23666, 26899, 33368, 33449, 33466, 34899, 36689, 44699, 46669, 66666, 88999, 222299, 222333, 222369, 223349
Offset: 1

Views

Author

David A. Corneth, Jun 20 2018

Keywords

Comments

Applying any of the following to terms in this sequence in any order gives a term from A276038: - Prepend a 1. - Permute digits. - Do nothing.
Subsequence of A276038.

Examples

			229 is in the sequence because it has digits in nondecreasing order, no digit 1 and a product of digits 2*2*9 = 36 which is a power of 6.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], And[FreeQ[#, 1], AllTrue[Differences@ #, # > -1 &], IntegerQ@ Log[6, Times @@ #]] &@ IntegerDigits@ # &] (* Michael De Vlieger, Jun 30 2018 *)
  • PARI
    is(n) = my(d = digits(n), p = prod(i = 1, #d, d[i])); d[1] >= 2 && vecsort(d) == d && 6^logint(p, 6) == p
    
  • Python
    from math import prod
    from sympy.utilities.iterables import multiset_combinations
    def auptod(maxdigs):
      n, digs, alst, targets = 0, 1, [], set(6**i for i in range(1, maxdigs*3))
      for digs in range(1, maxdigs+1):
        mcstr = "".join(str(d)*digs for d in "234689")
        for mc in multiset_combinations(mcstr, digs):
          if prod(map(int, mc)) in targets: alst.append(int("".join(mc)))
      return alst
    print(auptod(6)) # Michael S. Branicky, Jun 23 2021