A304392 Numbers without a digit 1 with digits in nondecreasing order and the product of digits is a power of 6.
6, 23, 49, 66, 229, 236, 334, 389, 469, 666, 2233, 2269, 2349, 2366, 2899, 3338, 3346, 3689, 4499, 4669, 6666, 22239, 22336, 22499, 22669, 23334, 23389, 23469, 23666, 26899, 33368, 33449, 33466, 34899, 36689, 44699, 46669, 66666, 88999, 222299, 222333, 222369, 223349
Offset: 1
Examples
229 is in the sequence because it has digits in nondecreasing order, no digit 1 and a product of digits 2*2*9 = 36 which is a power of 6.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10656 (all terms with <= 23 digits)
Programs
-
Mathematica
Select[Range[10^6], And[FreeQ[#, 1], AllTrue[Differences@ #, # > -1 &], IntegerQ@ Log[6, Times @@ #]] &@ IntegerDigits@ # &] (* Michael De Vlieger, Jun 30 2018 *)
-
PARI
is(n) = my(d = digits(n), p = prod(i = 1, #d, d[i])); d[1] >= 2 && vecsort(d) == d && 6^logint(p, 6) == p
-
Python
from math import prod from sympy.utilities.iterables import multiset_combinations def auptod(maxdigs): n, digs, alst, targets = 0, 1, [], set(6**i for i in range(1, maxdigs*3)) for digs in range(1, maxdigs+1): mcstr = "".join(str(d)*digs for d in "234689") for mc in multiset_combinations(mcstr, digs): if prod(map(int, mc)) in targets: alst.append(int("".join(mc))) return alst print(auptod(6)) # Michael S. Branicky, Jun 23 2021
Comments