cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304406 Number of partitions of n in which the sequence of the sum of the same summands is nonincreasing.

Original entry on oeis.org

1, 1, 2, 2, 4, 3, 6, 5, 9, 8, 11, 11, 20, 16, 20, 21, 32, 30, 41, 38, 50, 48, 62, 64, 89, 81, 97, 100, 123, 123, 151, 154, 187, 183, 221, 221, 279, 272, 312, 316, 377, 376, 446, 460, 531, 547, 628, 641, 754, 746, 841, 856, 990, 1007, 1145, 1167, 1325, 1346, 1519, 1567, 1776
Offset: 0

Views

Author

Seiichi Manyama, May 12 2018

Keywords

Comments

Number of integer partitions of n with weakly increasing run-sums. - Gus Wiseman, Oct 21 2022

Examples

			n |                      | Sequence of the sum of the same summands
--+----------------------+-----------------------------------------
1 | 1                    | 1
2 | 2                    | 2
  | 1+1                  | 2
3 | 3                    | 3
  | 1+1+1                | 3
4 | 4                    | 4
  | 2+2                  | 4
  | 2+1+1                | 2, 2
  | 1+1+1+1              | 4
5 | 5                    | 5
  | 2+1+1+1              | 3, 2
  | 1+1+1+1+1            | 5
6 | 6                    | 6
  | 3+3                  | 6
  | 3+1+1+1              | 3, 3
  | 2+2+2                | 6
  | 2+1+1+1+1            | 4, 2
  | 1+1+1+1+1+1          | 6
		

Crossrefs

Cf. A100882.
These partitions are ranked by A357861.
The complement is A357865, ranked by A357850.
The opposite version is A304405, ranked by A357875.
The strict version is A304430, ranked by A357864.
The strict opposite version is A304428, ranked by A357862.
Number of rows in A354584 summing to n that are weakly decreasing.
A000041 counts integer partitions, strict A000009.
A304442 counts partitions with equal run-sums, distinct A353837.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],LessEqual@@Total/@Split[#]&]],{n,0,30}] (* Gus Wiseman, Oct 21 2022 *)