A304428 Number of partitions of n in which the sequence of the sum of the same summands is increasing.
1, 1, 2, 3, 4, 6, 9, 11, 14, 20, 26, 33, 41, 50, 64, 81, 97, 120, 150, 176, 210, 255, 303, 362, 426, 503, 595, 703, 816, 953, 1113, 1283, 1482, 1721, 1988, 2299, 2650, 3031, 3464, 3965, 4492, 5115, 5820, 6592, 7467, 8484, 9568, 10822, 12185, 13724, 15445, 17381, 19475, 21855
Offset: 0
Keywords
Examples
n | | Sequence of the sum of the same summands --+----------------------+----------------------------------------- 1 | 1 | 1 2 | 2 | 2 | 1+1 | 2 3 | 3 | 3 | 2+1 | 1, 2 | 1+1+1 | 3 4 | 4 | 4 | 3+1 | 1, 3 | 2+2 | 4 | 1+1+1+1 | 4 5 | 5 | 5 | 4+1 | 1, 4 | 3+2 | 2, 3 | 3+1+1 | 2, 3 | 2+2+1 | 1, 4 | 1+1+1+1+1 | 5 6 | 6 | 6 | 5+1 | 1, 5 | 4+2 | 2, 4 | 4+1+1 | 2, 4 | 3+3 | 6 | 3+2+1 | 1, 2, 3 | 2+2+2 | 6 | 2+2+1+1 | 2, 4 | 1+1+1+1+1+1 | 6
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 71 terms from Seiichi Manyama)
Crossrefs
Number of rows in A354584 summing to n that are strictly increasing.
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Greater@@Total/@Split[#]&]],{n,0,30}] (* Gus Wiseman, Oct 21 2022 *)
Formula
a(n) <= A304405(n).
Comments